China's intelligence on U.S. nuclear arsenal Chapter 3 High Performance Computers.
This chapter was edited by Dr. Róbinson Rojas from the House of
Representatives release in order to facilitate understanding . |
_______________________________________________________________________ |
Summary
High Performance Computers (HPCs) are important for many military applications and
essential for some. Although there is limited information on how the PRC is using HPCs
for military applications, HPCs could facilitate many of the PRC's military modernization
objectives.
PRC organizations involved in the research and development of missiles, spacecraft,
submarines, aircraft, military system components, command and control, communications, and
microwave and laser sensors have obtained HPCs from the United States. Given the lack
of a proven and effective verification regime, it is possible that these HPCs have been
diverted for unauthorized uses, which could include the following:
· Upgrading and maintaining nuclear and
chemical weapons
· Equipping mobile forces with
high-technology weapons
· Building a modern fleet of combat and
combat-support aircraft and submarines
· Conducting anti-submarine warfare
· Developing a reliable, accurate ballistic
and cruise missile force
· Equalizing a battlefield with electronic
or information warfare
· Improving command, control,
communications, and intelligence capabilities
To realize the full potential of the acquired HPCs, the PRC must be able to
perform system integration, develop or procure application software, obtain weapon systems
test data, and institute quality-controlled production processes. The contribution of HPCs
to military modernization is also dependent on related technologies such as
telecommunications and microelectronics.
The Select Committee judges that the PRC has been using high performance computers
for nuclear weapons applications. The computer workstations recently acquired from the
U.S. represent a major increase in the PRC's computing power. Although not necessary to
design nuclear warheads, HPCs of 2,000 million theoretical operations per second (MTOPS)
or more can be used for such applications. In addition to nuclear weapons design, another
major concern is how the PRC can use U.S. HPCs to improve and maintain its nuclear
weapons.
If the PRC complies with the Comprehensive Test Ban Treaty, then its need for HPCs
to design, weaponize, deploy, and maintain nuclear weapons will be greater than that of
any other nation, according to the U.S. Department of Energy. The exact extent to
which HPCs can assist the PRC depends in part on the goals of the PRC nuclear weapons
program and the degree of uncertainty it is willing to accept in warhead performance.
HPCs are useful to the two- and critical to the three-dimensional computer modeling
that is necessary for the PRC to develop, modify, and maintain its nuclear weapons in the
absence of testing. The utility of such modeling depends on the amount of data
available from tests, the computing capacity that is available, and programmer expertise.
Complete three-dimensional models, critical to stockpile maintenance and assessment of the
effect of major warhead modifications in the absence of testing, require HPCs of one
million MTOPS or more. Assessing the effects of a new warhead without testing would
require three-dimensional modeling. In the absence of physical testing, two dimensional
models are important for estimating the effects of less substantial changes to warhead
designs, although the utility of such modeling decreases as the designs become more
sophisticated. However, the fidelity of any two-dimensional model is inherently limited,
and some level of uncertainty will always remain. Should the PRC resume physical (rather
than virtual) nuclear testing, the resulting data would permit more accurate
two-dimensional modeling of subsequent design changes. Although HPCs in the 2,000 to
10,000 MTOPS range are useful for such modeling, their precise utility for such
applications is unclear. These HPCs may be powerful enough to help the PRC make use of
design information that it stole from the United States, including design information for
the W-70 neutron bomb and the W-88 Trident D-5 thermonuclear warhead - without further
physical testing.
The U.S. Government, citing rapid advances in computer technology, has steadily
relaxed export controls on HPCs. A Stanford University study commissioned by the U.S.
Government was a key element in the relaxation of export controls on HPCs in 1996. The
study concluded that U.S.-manufactured computer technology between 4,000 to 5,000 MTOPS
was uncontrollable worldwide and would become available worldwide at 7,000 MTOPS by 1997.
The study also concluded that many HPC applications used in U.S. national security
programs occur at about 7,000 MTOPS and at or above 10,000 MTOPS. Criticisms of this and
other studies that were used to justify the 1996 HPC export control policy changes focus
on flaws in the methodology of the studies and the lack of empirical evidence and analysis
to support their conclusions. These critics also claim that the U.S. Government revised
the export controls on HPCs without having adequate information on how countries of
concern would use HPCs for military and proliferation activities.
Until June 1998, the U.S. Government's ability to verify the location and use of
HPCs in the PRC was blocked by the PRC's resistance to post-shipment, on-site
verification visits. A new agreement affords the U.S. Government the right to request
access to some American HPCs, but includes substantial limitations on such requests and
any visits. Moreover, the post-shipment visits that are allowed can verify the location of
an HPC, but not how it is used.
Rapid advances in computer technology have altered traditional concepts of what
constitutes an HPC. Observers in the computer industry and academia state that
HPC-level performance can be obtained by linking together inexpensive commodity
processors. For some applications the efficiency and effectiveness of the linked commodity
processors depends on the application, skill of the programmer, and interconnection
software. The resources and time needed to effectively modify and operate significant
defense applications for such linked systems have not yet been demonstrated. Nonetheless,
the U.S. is pursuing research and development on the use of linked systems for
three-dimensional modeling for nuclear stockpile maintenance.
While it is difficult to ascertain the full measure of HPC resources that have been
made available to the PRC from all sources, available data indicates that U.S. HPCs
dominate the market in the PRC and there really is no domestic PRC HPC industry. While
the PRC has a large market for workstations and high-end servers, there is a smaller
market for parallel computers that is entirely dominated by non-PRC companies such as IBM,
Silicon Graphics/Cray, and the Japanese NEC. However, there continues to be significant
market resistance to Japanese HPC products in Asia, especially as U.S. products are
beginning to have significant market penetration. The PRC has assembled several HPCs in
recent years, using U.S.-origin microprocessing chips. The latest such HPC may perform at
10,000 MTOPS. However, the PRC's HPC application software lags farther behind world levels
than its HPC systems.
Since the 1996 relaxation of U.S. export controls on HPCs, U.S. sales of HPCs
between 2,000 and 7,000 MTOPS to the PRC have burgeoned. Of computers not requiring
licenses under the 1996 regulations, 23 HPCs in this performance range were exported in
1996 and 123 in 1997. An additional 434 HPCs were to be exported in the first three
quarters of 1998. Between 1994 and 1998, the U.S. Government approved licenses for 23 HPCs
greater than 2,000 MTOPS.
Thus, the PRC may have received a total of 603 U.S. HPCs since 1996. In 1998,
the United States approved licenses for two HPCs in excess of 10,000 MTOPS. Approximately
77 percent of the U.S. HPCs that have been exported to the PRC were under 4,000 MTOPS.
The aggregate of these computational resources is complemented by millions of
non-export controlled low-end machines about 4.5 million desktops, portable personal
computers, personal computer servers, and workstations in 1998 alone. Ninety percent
of these machines are being used by the PRC Government, industry, and educational
institutions. About 60 percent of these machines are being produced by PRC companies.
|
HIGH-PERFORMANCE
COMPUTERS
High Performance Computers (HPCs) are useful in a broad range of applications.
These include pharmaceutical development, automobile crash modeling, aerospace
engineering, petrochemical research, financial market and credit analysis, weather
prediction, academic research, and national security applications.
A recent report by the Defense Department defines high performance computers as:
the mid-range of the speed scale. These computers are used for internet servers, Local
Area Network (LAN) servers, affordable number crunchers, Computer Aided Design
(CAD)/Computer Aided Manufacturing (CAM), publishing, billing, databases, data mining,
banking, and much more. Presently these
computers are in the speed range of 1500 - 40,000
Millions of Theoretical Operations Per Second (MTOPS).1
Current U.S. export controls define HPCs by establishing the threshold for license
consideration at 2,000 or more MTOPS.
In the realm of national security, HPCs are valuable in the design, development,
manufacturing, performance, and testing of weapons and weapons platforms. These systems
include:
· Nuclear, chemical, and biological weapons
· Tactical aircraft
· Cruise and ballistic missiles
· Submarines
· Anti-submarine warfare
· Command, control, and communications
· Information warfare
HPCs are also useful in the collection, processing, analysis, and dissemination of
intelligence and in the encryption or decryption of communications.2
In addition, military applications such as target tracking and recognition, radar
mapping, armor and anti-armor design, protective structures, aerodynamics, real-time
modeling, and tactical weather prediction are substantially facilitated by the use of
HPCs.3
While a broad array of potential applications for HPCs is known, the specific ways in
which potential adversaries of the United States are using them is much harder to
determine. For example, a 1998 study of the viability of U.S. export controls on HPCs
stated:
It is difficult to acquire good information on the use of HPC[s] for national
security-related applications by countries of national security concern. This is true
whether one assumes foreign practice is the same as U.S. practice, or foreign practice
involves different or more clever ways that might not have the same computing
requirements.4
In short, there is limited information about how specific countries of national
security concern, including the PRC, use HPCs.5
Another complicating factor in determining whether and how HPCs are being used by the
PRC and others for national security applications is ambiguity as to the HPC performance
minimally required for specific applications. Researchers are usually interested in
improving their applications if they have access to more computing power. Therefore, the
"bigger and faster" computers are, the better. Speed helps make optimum use of a
researcher's time.6 Many computer programs can be executed on less capable computer
hardware, although there may be penalties in level of detail and turnaround time.7
The requirement to use the most powerful computers available may also be closely
related to program economics.8 The use of less powerful computers leads to longer
processing runs. This situation leaves expensive people and facilities idle, making the
purchase of an expensive HPC necessary to employ all the resources available efficiently.9
There are many potential national security
applications for which the PRC could use HPCs. The following figure10 shows that the
U.S. defense community uses HPCs for national security applications over a full range of
MTOPS performance levels. Although nearly 44 percent of the applications currently being
run in the U.S. defense community are being run at performance levels below 7,000 MTOPS,
many critical applications require processing power in excess of that threshold. The
relative importance of the national security applications cannot be ascertained based on
the MTOPS requirement.11 As newer computer systems with increased performance become
available to the market, an increasing number of applications will appear in the higher
MTOPS range (that is, above 30,000 MTOPS).12 These applications will be similar to current
applications, but will require greater resolution or ability to address larger-sized
problems than is possible on current systems.13
U.S. HPCs recently sold to PRC organizations are useful for a number of military
purposes including:
· Information warfare
· Cryptography
· Military command and control
· Intelligence collection
· Intelligence instrument research and
development
· Development of high technology
· Ballistic and cruise missiles
· Ballistic missile defense
· Mobile force development
· Designing submarine nuclear reactors
· Combat simulation
These PRC organizations are engaged in governmental, military, academic, and commercial
work. In the absence of an end-use verification regime, the United States has no means of
determining to what use a particular HPC is applied by such PRC organizations.
Military Objectives Contribute to the PRC's
Interest in High Performance Computers
PRC military objectives require superior battlefield management, including:
· Intelligence
· Surveillance
· Reconnaissance
· Guidance and control
· Communications
They also require superior weapons and platform design, testing, and maintenance.
Satisfying these requirements can be facilitated by HPC capabilities.14
The PRC is seeking HPC software for:
· Satellite launch and missile guidance
simulation
· Computer assisted design and manufacturing
systems
· System simulators
· Applications of artificial intelligence15
The PRC is convinced that the United States has the most advanced HPC technology. Thus,
it seeks to acquire as much of it as it can without jeopardizing PRC national security
interests by, for example, becoming susceptible to computer viruses and information
attacks.16
The specific ways the PRC is using HPCs for military applications is difficult to
determine.17 During this investigation, reports regarding the PRC's military objectives,
information concerning the application of HPCs in support of national security objectives,
and data concerning HPC sales to the PRC were analyzed.
The results of this analysis provide a basis for assessing the risk to U.S. national
security and regional security interests that accrues from the PRC's acquisition of HPCs.
This assessment is summarized in the following paragraphs.
U.S. High Performance Computers Have the Greatest Potential
Impact On the PRC's
Nuclear Weapons Capabilities
The Department of Energy judges that the PRC's acquisition and application of HPCs to
nuclear weapons development have the greatest potential impact on the PRC's nuclear
program. This is particularly true since the PRC has agreed to the ban on nuclear
testing.18
Existing PRC Nuclear
Weapons
The computing power required to simulate the performance of a specific nuclear weapon
depends on the sophistication of the design, and the availability of nuclear and
non-nuclear test data for the new and aging materials the weapon contains.19
For existing weapons with supporting test data, more powerful computing resources allow
simulations that include more physical processes and more fundamental representations.20
One means of enhancing model fidelity - the extent to which the model accurately
represents the real phenomena - is to represent all dimensions of the process being
modeled.
The explosion of a nuclear weapon is a three-dimensional process that cannot be
accurately represented in one or two dimensions. Augmenting model fidelity by shifting
from two to three dimensions requires an increase in computer performance capacity to one
million MTOPS.21
Results from higher-fidelity models allow scientists and decision-makers to develop a
better estimation and understanding of the reliability and performance of the weapon.22
Another factor bearing on model fidelity and confidence in model results is the extent
to which the model has been validated. Validation consists of running a simulation of a
previously conducted test, and verifying that the computed results are close to the test
results. The more the simulated situation differs from the actual test, the less
confidence can be placed in the computed results.23
The fewer the tests that have been conducted, the more gaps there are in the
understanding of nuclear weapons science.24
HPCs may help scientists gain insight and
understanding by allowing many simulation runs to be conducted, changing one variable
value at a time to create a range of solutions for comparison to test data. HPCs allow
those calculations to be completed in an acceptable length of time.25
The following table illustrates HPC performance demand as a function of model
complexity, test data, and weapons maturity. Row 1 of the table focuses on a full
exploration of the weapons design category with data from tests of pristine and aged
weapons. Row 2 of the table assumes the number of tests dedicated to each warhead class is
between one and six. Row 3 assumes few proof-of-concept tests or zero nuclear tests
conducted of the design after components have aged for ten years.
* If PRC has obtained U.S. or Russian nuclear test codes.
Ý The PRC is known to possess some test data for certain advanced nuclear weapons, but
may be without test data for others.
As the table indicates, the PRC's demand for HPCs covers a broad range of computing
capability, and it is unclear where the PRC's requirements fall within that broad range.
To date, the most powerful HPCs exported to the PRC from the U.S. - two in 1998 - have
been at the 10,000 MTOPS level.
Even HPCs in the 2,000 to 10,000 MTOPS range are useful for nuclear weapons
applications, although their precise utility is dependent on the amount of test data the
PRC possesses.
New PRC Nuclear Weapons
The PRC's nuclear weapons program has advanced rapidly, largely through the theft of
U.S. nuclear weapons design information.
Originally, the PRC built large, heavy nuclear weapons for air or missile delivery. The
PRC is now moving to new generation nuclear weapons, and has been significantly assisted
by the theft of U.S. design data. These new nuclear weapons are smaller, lighter, and have
higher yield-to-weight ratios.27 The Select Committee judges that the PRC has the
infrastructure and ability to use the stolen U.S. design information to emulate elements
of U.S. thermonuclear warheads for its next generation of thermonuclear warheads.
HPCs could be valuable to the PRC in
connection with the production of these next generation nuclear weapons based on
elements of U.S. design information, because they would enable scientists to examine many
values for many uncertainties quickly.28
Similarly, HPCs could be useful in connection with maintaining the current PRC nuclear
weapons stockpile for which test data exist, although the exact MTOPS range needed is
uncertain. HPCs would permit analysis of any uncertainty with respect to the performance
of these weapons.29
In addition, as military missions evolve and delivery platforms develop, the PRC may be
forced to make modifications in tested designs to accommodate new size and weight goals.
For example, a PRC focus on small-scale regional conflict would suggest the development of
compact, low-yield nuclear devices. Evaluating the effects of these design changes would
require sophisticated computer models run on HPCs. If the changes to the PLA's nuclear
weapons are significant, the need for modeling accuracy would require three-dimensional
testing, possible only with computers that have a performance capability of a million
MTOPS or more. For less extensive changes, including any changes required to weaponize new
nuclear warhead designs that the PRC has already successfully tested, two-dimensional
modeling may be sufficient. HPCs as low as 2,000 to 7,000 MTOPS are helpful in such
applications, although the optimal MTOPS level required for such modeling is unclear.
Nuclear Weapons Stockpile
Stewardship
Assuming compliance with the Comprehensive Test Ban Treaty, the designers of new or
modified PRC nuclear devices will have to certify the performance of aging weapons by
using a combination of treaty compliant experiments and computer simulations.30
Identifying, predicting and mitigating the effects of aging on nuclear weapons is
computationally intensive, requiring three-dimensional modeling and simulation involving
many uncertainties. For the PRC, the computing demands are even greater because of the
limited amount of nuclear test data to support the modeling.
Thus, HPCs at high MTOPS levels would be particularly useful in helping explore many
values for many variables quickly.31 As the United States is finding with its Stockpile
Stewardship Program, maximum HPC performance in the range of millions of MTOPS is
necessary for three-dimensional modeling of the aging of nuclear weapons.
For this reason, the Select Committee judges that the PRC is almost certain to use U.S.
HPCs to perform nuclear weapons applications. Moreover, the PRC continues to seek HPCs and
the related computer programs (known as codes) for these applications.
The U.S. national weapons laboratories are
currently modernizing their test data or "legacy codes" based on data from the
large number of U.S. tests. The Select Committee judges that if the PRC were to
acquire nuclear test codes and data from the United States, then the PRC could access
empirical data from the large number of U.S. tests that were conducted before the
Comprehensive Test Ban Treaty.
The possession of stolen U.S. test data would greatly reduce the level of HPC
performance required.
It is also likely that the PRC seeks access to the Los Alamos National Laboratory-based
Dual Axis Radiographic Hydrodynamic Test Facility, for the reason that it uses powerful
X-rays to analyze the effects of implosions during non-nuclear tests.
The PRC is also likely to seek information regarding the use of lasers for high energy
density studies.
Transfer of HPC Technology Can Benefit PRC Intelligence
Capabilities
The PRC is improving its capabilities in intelligence collection and unmanned aerial
vehicles. The PRC is also a user of encryption technology in its government networks.32
HPCs are useful in the design and operation of intelligence collection platforms,
including unmanned aerial vehicles, and are essential to running the computer codes that
process intelligence data and perform encryption tasks.
Sensors for Surveillance,
Target Detection,
and Target Recognition
Radars, acoustic and non-acoustic sensors, and signal and image processing appear to be
continuing targets for acquisition by the PRC.33
Based on U.S. experience, HPCs can be used to facilitate research and development of
sensors for surveillance, target detection, and target recognition. Use of HPCs in this
manner results in sensor systems that are more capable of detecting stealthy platforms,
such as aircraft, missiles, and submarines.34
In the design phase, these applications can be computationally intensive, depending
upon the level of realism required. For example, U.S. computational requirements range
from 500 to over 40,000 MTOPS.35
Also, many of the resultant systems require HPCs and advanced software for their
operation. For example, a deployed X-band phased-array radar for ballistic missile search,
fire control, and kill assessment requires an HPC to control the radar, detect, identify,
and track targets, and compute fire control solutions of multiple high-speed targets.36
In general, timely detection of targets using radar requires homogeneous, tightly
coupled systems. The radar system functions by creating images of remote objects and
processing the resulting images for review by humans or input into automated guidance or
decision support systems. This operation is computationally intensive since large volumes
of data must be filtered, enhanced, and interpreted, often in real time.37
In the United States, some radar processing applications - for example, the processing
of data from synthetic aperture radars - require 32,000 to 115,000 MTOPS.38 Although less
capable computers may be useful for these applications, they are not suitable for
operational environments that require real-time detection of targets with weak radar
signatures, or target discrimination in high target-density environments. Further, radar
system performance requires high-quality target templates and empirical validation, in
addition to HPC processing speed.39
Sensor Platforms for
Aerial and Space-Based Reconnaissance
The PRC is interested in acquiring unmanned aerial vehicles (UAVs) that are used for
day/night aerial reconnaissance, battlefield surveillance, target positioning, artillery
spotting, border patrol, nuclear radiation sampling, and aerial photography.40
The HPC challenge is to provide a sufficient on-board-sensor data processing capability to
allow wide-area searches at high resolution, while minimizing communications
requirements.41
Satisfying such sensor data processing requirements could also be of value to the PRC's
efforts to improve space-based information gathering capabilities.42
Cryptology
Another potential application of HPCs by the PRC is cryptology - the design and
breaking of encoded communications. This application demands fast processing, and the
ability to handle large amounts of data. As a point of reference, the U.S. National
Security Agency uses some of the highest performance computers available. However,
significant cryptologic capabilities can be achieved through the use of widely available
computer equipment, such as networked workstations or parallel processors.43
Transfer of High Performance Computer Technology To the PRC
Could Contribute to the Manufacture of Weapons of Mass Destruction, Missiles,
and Other Weapons
While there is little information regarding the specific ways that HPCs are being used
in the PRC to achieve military objectives,44 open source reporting and stated PRC military
modernization goals tend to support the belief that the PRC could be using HPCs in the
design, development, and operation of missiles, anti-armor weapons, chemical and
biological weapons, and information warfare technologies.45
Missiles
The PRC is developing advanced cruise missiles, anti-ship missiles, and conventional
short-range ballistic missiles (SRBMs).
While the PRC could design, for example, a stealthy cruise missile without using HPCs,
HPCs facilitate the design of such weapons, particularly in exploring guidance and stealth
concepts.46 For instance, the Beijing Simulation Center is using hardware-in-the-loop
testing in the development of homing guided missiles. Given that such testing involves
near real-time processing, HPCs are particularly useful.47
The PRC is also developing new tanks, and new multiple-launch rocket systems. HPCs are
useful for executing the detailed, physics-based simulations of weapons effects. Such
simulations are useful in assessing the effectiveness and vulnerabilities of these new
systems. The calculations are complex, and HPCs are required for efficient processing.48
Chemical and Biological
Weapons
The PRC has mature chemical and biological weapons programs that have produced a
variety of chemical and biological agents since the 1960s. Such weapons could serve
deterrent, retaliatory, or offensive purposes.49
Computer-aided design and computer-aided manufacturing (CAD/CAM), a classic use of
HPCs, would be useful in planning and designing the integration of chemical warfare agent
development processes with chemical industries.50 This possibility is consistent with
papers published by PRC scientists concerning chemical and manufacturing processes.51
The PRC can deliver chemical and biological agents with a variety of weapons systems,
including missiles and artillery. Since the PRC can employ a variety of delivery means for
such agents, key operational considerations for the PRC include how dispersion patterns
vary as a function of delivery method and weather. This is a computationally demanding
area in which HPCs are extremely useful.
The Select Committee concludes from evidence it has received that the PRC is interested
in HPC modeling of dispersion patterns of chemical and biological weapons based on
different weapons delivery systems and varying weather conditions.52 In addition, the PRC
could be employing HPCs to model the negative effects on the opponent of casualties, and
of cumbersome protective gear for a given dispersion pattern of chemical and biological
weapons.53
Finally, the PRC may also be using HPCs to design chemical agent detection sensors and
protective measures. Such applications can require computational power ranging from 2,000
to 30,000 MTOPS.54
Information Warfare
Several PRC scholars and leading military strategists indicate that the PRC has an
ambitious, albeit nascent, offensive information warfare program. Currently, the PRC's
primary focus for information warfare is military conflict. Concluding that information is
becoming a key determinant of military power and victory in war, the PRC has identified
the development of information warfare capabilities as a key modernization goal of the
PLA.
The PRC should . . . fully bring into play the guiding role of information warfare
research in building the military and seek measures by which to launch vital strikes in
future warfare, so as to damage the enemy's intelligence gathering and transmission
abilities, and weaken the enemy's information warfare capacity.55
HPCs could prove valuable to the PRC in the evolution of this strategy by exploring
U.S. information networks and their vulnerabilities, and the technologies that are
associated with information warfare such as jammers, microwave weapons, and anti-satellite
weapons.56 |
Transfer of High Performance
Computer Technology To the PRC Could Support Attainment Of Other PRC Military Objectives
The effectiveness of military operations depends heavily on support functions that
include:
· Command, control, and communications
· Weather prediction
· Cartography
· Combat forces training57
HPCs can be used to enhance all of these functions.
In military operations, size, weight, and power consumption limitations are all
stressing requirements that may necessitate the use of customized or embedded HPCs, rather
than commercially available systems.58
Command, Control, and
Communications
Leading PRC military strategists and political/military scholars in the PRC have
publicly recommended that the PLA give high priority to the development of improved
automated command, control, and communications networks.59
The recommendations include:
· That the command, control, and
communications system at and above the battalion level of various service arms be turned
into an integrated mutually linked network
· That the traditional vertical and tiered
command system be converted into a network command structure, in order to meet the demands
of time and flexibility in command
· That the centralized type command system
should be developed into a dispersed command60
Another PRC writer has stated that multi-dimensional interconnected networks on the
ground, in the air (and outer space), and underwater - as well as terminals, modems, and
software - are not only instruments, but also weapons.61
The PLA has begun research on the technologies necessary to develop an Integrated
Battlefield Area Communications System.62 In addition, research is underway on related
subjects such as real-time intelligent decision-making for fighter aircraft maneuver
simulation systems.63
Full implementation of these goals will require exceptional computational power.
However, this power can be efficiently provided by distributed computer systems.64 Battle
management functions are also readily scalable, making them suitable for initial
implementation on commercially available computer equipment.
Meteorology for Military
Operations
Weather modeling and prediction is essential in military operations in that it effects
force deployments, protection against chemical, biological, and nuclear environments,
weapons effectiveness, and logistics.65
While a typical global weather model with 75-mile resolution can be executed on a
workstation with performance in the 200 MTOPS range, typical tactical weather models with
30-mile resolution require computers rated in excess of 10,000 MTOPS. Calculation of
weather forecasts in littoral areas to resolve complex air-ocean interactions is even more
demanding.66
Cartography for Military
Operations
Depending on the perceived requirements of military commanders, cartography requires
high computational levels. For instance, processing topographic data in a timely manner to
support military operations may require up to 24,000 MTOPS. For military planning purposes
in which time is not a factor, cartographic applications can be accomplished at lower
MTOPS levels - less than 4,600 MTOPS - and computer hardware can be selected based on cost
rather than speed and memory capacity.67
Military Training Systems
Research underway at the PRC's Harbin Institute of Technology indicates the PRC is
focused on large-scale training systems.68 The computer performance requirements in this
regard depend on the level of fidelity that is needed, the complexity of the training
objectives, and the time that is available. For training objectives that require realism
and representation of large-scale forces, HPC performance may exceed 10,000 MTOPS.69
National Security Implications of High Performance Computer
Use by the PRC Military
The Select Committee judges that the PRC is attempting to achieve parity with U.S.
systems and capabilities through its military modernization efforts. The PRC intends by
this effort to increase its regional power projection capabilities and augment its ability
to hold the neighboring countries of Taiwan, India, and Japan at risk.
The PRC's use of HPCs for its military modernization poses risks to U.S. national
security. Significant improvements in PRC information warfare and military operations may
increase the threat to U.S. military systems and personnel in a way that cannot be easily
countered.70 HPCs of varying capability could assist the PRC in this endeavor.71
Further, the PRC is likely to modernize its nuclear arsenal, with the help of HPCs. In
this regard, it is believed that, if the PRC maintains its current path, it will still be
a second-class nuclear power compared to the United States and Russia for the next several
decades. However, if Washington and Moscow were to reduce their nuclear forces to about
1,000 warheads, as President Yeltsin has suggested, the PRC could conceivably expand its
nuclear forces in an attempt to reach numerical parity.
The PRC's continuing chemical and biological weapons programs, and improvement of
weapons delivery platforms such as cruise missiles, may also be the beneficiaries of
increased HPC capability. Continued development or use of chemical or biological weapons
by the PRC could have serious strategic and tactical implications for the United States.72
If it is to fully exploit HPC hardware capabilities for military applications, the PRC
requires improved system integration, quality production processes, and development of
doctrine and tactics.73 The PRC also requires technologies that are interdependent with
HPCs in military applications, such as telecommunications and microelectronics.
Control or monitoring of these HPC-related services and technologies may provide
additional opportunities to influence the pace of the PRC's attainment of its military
modernization objectives.
U.S. Export Policy Has Gradually Relaxed
Controls on High Performance Computers
In 1988, exporters of HPCs were required to obtain a Department of Commerce license to
export computers with a performance level - called a Composite Theoretical Performance
(CTP) - of 12.5 MTOPS or more to most destinations. A supercomputer was defined as any
computer with a performance level of 195 MTOPS or greater.74
Foreign policy controls were imposed on supercomputers performing at 195 MTOPS and
higher in May 1992, based on a bilateral arrangement with Japan, the other major
supercomputer-exporting country.75
As required by the Export Enhancement Act of 1992, the Trade Promotion Coordinating
Committee submitted to Congress a report entitled "Toward a National Strategy"
in September 1993.76 That report presented a strategic plan that included as one key
element changing the standard for a supercomputer from 195 MTOPS to 2,000 MTOPS.77
In February 1994, the Department of Commerce raised the licensing threshold for the
export of supercomputers to most destinations from 195 MTOPS to 1,500 MTOPS or higher. At
the same time, the United States announced that it had reached agreement with Japan, the
other partner in the "supercomputer regime," regarding the new supercomputer
definition of 1,500 MTOPS. The United States also announced that it would continue to seek
Japan's agreement to further increase the supercomputer threshold to 2,000 MTOPS.78
In April 1994, the Department of Commerce established a new General License
"GLX," which would allow certain shipments of any items, including computers up
to 1,000 MTOPS that formerly required an individual validated license, to civil end users
and nonproliferation end uses in formerly proscribed destinations, including the PRC. The
purpose of the new general license was to reduce paperwork and licensing delays for
exporters, while focusing controls on exports of "direct strategic concern." The
Department of Commerce stated that it established the "GLX" designation to
bridge the transition between the termination of COCOM in March 1994 and the establishment
of a successor regime.79
In January 1995, the Department of Commerce
again revised certain supercomputer requirements. Specifically, Commerce noted that it
would conduct annual reviews of the supercomputer definition, threshold levels,
safeguards, supercomputer country groupings, and supercomputer licensing requirements. The
reviews would examine HPC controls in light of national security and proliferation
concerns, technical advancements, and changes in market conditions, and would consider
recommendations to revise the controls. The regulations included the following country
requirements:
· A "general license" - meaning no
license required - was available for all supercomputer exports to supplier countries,
which then included only Japan
· A validated license or re-export
authorization was required to export, re-export, or transfer within the country for:
Australia, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, and
the United Kingdom
· In addition to a validated license or
re-export authorization, a safeguard plan signed by the ultimate consignee, and a
certification from the government of the importing country (for supercomputers equal
to or greater than 1,950 MTOPS) was required for several countries. These included
Austria, Finland, Iceland, Mexico, Singapore, the Republic of Korea, Sweden, Switzerland,
and Venezuela
· A validated license or re-export
authorization was required to export or re-export supercomputers to the PRC, and
applications were generally to be denied. In the event a license was issued, it would
include among the licensing conditions certain safeguards selected from the security
conditions listed in the Export Administration Regulations80
Some Reviews That
Contributed to High Performance Computer
Policy Changes in 1996 Have Been Criticized
On January 25, 1996, after the first periodic review, the Department of Commerce
published revised controls for computers in the Export Administration Regulations and
identified four computer country groups for export purposes. In announcing the January
1996 revision, the Executive branch stated that one goal of the changes was to permit the
government to calibrate control levels and licensing conditions to the national security
or proliferation risk posed at a specific destination.81
The Stanford Study
A key element of the 1995 Executive branch review of HPC export controls was a Stanford
University study that was commissioned jointly by the Commerce and Defense Departments.82
Among other things, the study was tasked to assess the availability of HPCs in selected
countries, and the capabilities of those countries to use HPCs for military and other
defense applications.83 The study, released in November 1995, concluded:
· U.S.-manufactured computer technology
between 4,000 and 5,000 MTOPS was widely available and uncontrollable worldwide
· U.S.-manufactured computer technology up
to 7,000 MTOPS would become widely available worldwide and uncontrollable by 1997
· Many HPC applications used in U.S.
national security programs occur at about 7,000 MTOPS and at or above 10,000 MTOPS84
The study also concluded that it would be too expensive for the U.S. Government and
industry to maintain the effective control of computing systems with performance levels
below 7,000 MTOPS. Further, the study stated that attempts to control computer exports
below this level would become increasingly ineffectual, would harm the credibility of
export controls, and would unreasonably burden a vital sector of the computer industry.
The study also raised concerns about the ability of the U.S. Government to control HPC
exports in the future, in light of advances in computing technology and its dispersal
worldwide.85
However, the Stanford study had several
methodological limitations. It lacked empirical evidence or analysis to support its
conclusion that HPCs were "uncontrollable" given both worldwide availability and
insufficient resources to control them. Neither the study nor the U.S. Government made
estimates of these resources. Also, the study did not assess the capabilities of countries
of concern to use HPCs for designated military and proliferation applications, even though
that was required by the tasking.86
Seymour Goodman, one of the authors of the 1995 Stanford study, acknowledged that U.S.
Government data were inadequate to make this assessment, and the study recommended that
better data be gathered.87 Furthermore, the study noted that data used from the High
Performance Computing Modernization Office were not optimal for the study's purposes,
although it stated that the data were sufficient to "conjecture" that the
majority of national security applications were already possible at uncontrollable levels.
Also, the study stated that time constraints did not allow a comprehensive review of
defense applications.88
In addition to the Stanford study, Executive branch officials have said that they also
relied on other analytical products as part of the HPC review process.89 These included:
· A Defense Department review of military
applications90
· An August 1995 Institute for Defense
Analyses (IDA) technical assessment of clustering computers91
· Defense-developed criteria for weapons of
mass destruction proliferation behavior92
· Internet information related to the
computer market93
Some officials also referred to two 1995 Commerce Department studies on the worldwide
"supercomputer" market and technology trends. These documents supported the
conclusion that foreign availability of HPCs, especially in countries of proliferation
concern, was limited in 1995, but that technology trends would make HPC technology more
readily available throughout the world in the future.94 As a result, it appeared that
denying HPC access to proliferating countries in the next century would become
increasingly difficult, and perhaps impossible.
Another factor that may have figured in the
decision to relax HPC export controls is that the National Security Agency (NSA) -
which had been quite active in the past in HPC controls, including reviewing Commerce
license applications to the Commerce Department for exports of HPCs - changed its
approach. Around 1993, the NSA began to ease its involvement in computer export controls.
By 1995, NSA had moved away from its activities in the supercomputer area, and had backed
out of the high performance computer export control debate entirely.
The stated justification for this change in policy was concern for the health of the
U.S. computer industry and the industry's need for exports.
Defense Department Review of Military Applications for
HPCs
Pentagon officials advised the General Accounting Office that there was no document that
summarized the results of the Department of Defense review of military applications for
HPCs.95 One Defense Department official stated that these results were incorporated into
the Stanford study.96 An August 24, 1995 Defense Technology Security Administration (DTSA)
memorandum summarized some general points of a Defense Department "Supercomputing
Study" that reviewed military applications.97 The DTSA memorandum concluded:
· The maximum practical computing
performance level available to Defense Department research laboratories at the time
was the Cray C90 vector computer at 21,000 MTOPS (for a full 16-processor configuration)
· Massively parallel processors provide
higher composite theoretical performance, but not all of it is usable processing
· High performance computing would play a
critical role in the Defense Department's future plans to maintain technological
superiority, and the Cray vector computer was the primary computer used for the most
computing-intensive applications
· Researchers need high performance
computing to resolve significant problems in a reasonable time, and to reach effective
conclusions rapidly regarding next steps to be taken
· Massively parallel processors (such as the
IBM SP2 and Cray T3D) had limited applicability to most of the Defense Department's
then-current research efforts. Software did not exist to permit massively parallel
processors to simultaneously be used on those applications
· Workstations are critical to Defense
Department programs. They are used to prepare programs and data for HPC runs and to
analyze HPC data runs. However, they were not replacing HPCs, either in networked or
clustered configurations
· Symmetric multi-processors (such as the
SGI Power Challenge and the DEC Alpha) would be major factors in future Defense Department
research in spite of the higher performance of the Cray vector computers, because the
lower overall costs of symmetric multi-processors make them affordable in a constrained
defense budget environment
· Symmetrical multi-processors were not
being run effectively at Defense Department laboratories with more than 12 single
processor workstation levels of between 200 and 500 MTOPS. Other symmetrical
multi-processors were being run at levels between 1,000 and 5,000 MTOPS; vector computers
were being run at levels between 10,000 and 20,000 MTOPS; and massively parallel
processors were being run at levels over 5,000 MTOPS because of their scalability in
parallel signal processing applications
· There was no significant relationship
between the maximum composite theoretical performance of the vector computers and the
massively parallel processors. Therefore, export control levels should not be set on
the basis of the maximum number of processors that can be included in a massively parallel
processor98
Institute of Defense Analyses Technical Assessment
An IDA technical assessment reported that a consensus of computing experts, supported by
available data, believed that supercomputing restrictions for systems above 10,000 MTOPS,
but below about 20,000 MTOPS, could be circumvented to some extent by aggregating lower
performance processors. However, the IDA assessment stated that it was difficult to go
beyond this level as of 1996, except for a small set of "embarrassingly parallel
problems" - that is, problems that could easily be broken up into parts that could be
solved simultaneously.99
The assessment predicted that, by 1996, users should be able to interconnect systems
with a total of 40,000 to 80,000 MTOPS. Such a configuration could be programmed,
according to IDA, "to yield computational capabilities approximating that of a single
20,000 CTP computer for a given problem or constrained set of problems." A user may
achieve this by investing from six months to a year's worth of effort, although the
resulting system would be neither user-friendly nor economically competitive in the world
market.100
The IDA assessment also stated that the security risk would depend on whether there are
militarily critical problems that demand high performance computing capability between
10,000 and 20,000 MTOPS, and that cannot be attacked for some technical reason by
aggregation. If such problems exist, IDA advised, the issue would become how much benefit
to U.S. national security it is to delay or degrade a foreign entity's ability to achieve
certain results for a given class of problems. The IDA study concluded that a user faced
with limited computing power would simply run the program for a longer period of time or
run it with coarser granularity.101 (Granularity of an application refers to the amount of
computation relative to the amount of movement of data between processors.102 When this
relationship becomes a processing bottleneck in the interconnect between processors,
problems that are more easily broken up into parts - that is, "coarsely grained"
- are those that can be run effectively.103)
The IDA assessment and its sponsors, Dr. Joseph Golden, Director of Multinational
Technology Programs in the Office of the Deputy Undersecretary of Defense for
International and Commercial Programs, and Norman Jorstad, Director of IDA's Technology
Identification and Analysis Center, provided only minimal support and documentation (four
articles) for the study's conclusions.104
As IDA officials subsequently explained to General Accounting Office, IDA had assembled
a group of specialists from the U.S. Government and the computer industry who discussed
the issues and produced the report following a series of meetings. While the specialists
might have assembled documentation, IDA retained none of it.105
A Defense Technology Security Administration official commented in July 1998 that the
agency had concerns about the study.106
Defense Department Proliferation Criteria
In the 1995 effort to develop the country tier system, Defense Department officials
assessed countries for the HPC export control review process on the basis of six criteria
and assigned each country to a particular HPC country tier.107 Part of the information
used in this process was a ranking of each country in the world by the level of risk
associated with that country's proliferation record. The PRC was ranked at the highest
level of risk.
Former Deputy Assistant Secretary of Defense for Counterproliferation Policy Mitchel
Wallerstein explained to the General Accounting Office that the Defense Department did not
conduct a threat assessment regarding HPCs because it was not tasked do so.108 Wallerstein
later said that he had consulted with a counterpart on the Joint Staff about the risk
associated with the levels of HPC being considered for export, and that, while the Joint
Staff had concerns, the risk was considered reasonable.109
The six assessment criteria used by the Defense Department to create HPC country tiers
were:
· Evidence of ongoing programs of U.S.
national security concern, including proliferation of weapons of mass destruction with
associated delivery systems and regional stability and conventional threats
· Membership in or adherence to
nonproliferation and export control regimes
· An effective export control system
including enforcement and compliance programs and an associated assessment of diversion
risks
· Overall relations with the United States
· Whether United Nations sanctions had been
imposed
· Prior licensing history110
Details of the 1996 High
Performance Computer
Export Control Policy Changes
The export control policy announced in October 1995 and implemented in January 1996
removed license requirements for most HPC exports with performance levels up to 2,000
MTOPS.111
The policy also organized countries into four "computer tiers." Tier 1
represents the lowest level of concern to U.S. security interests, and each subsequent
tier represents a higher level.112
The revised HPC policy was applied as follows:
· Tier 1 (28 countries): Western
Europe, Japan, Canada, Mexico, Australia, New Zealand. No prior government review or
license for any computer exports, but U.S. companies must keep records regarding higher
performance shipments (that is, over 2,000 MTOPS) and these records will be provided to
the U.S. Government as directed.
· Tier 2 (106 countries): Latin
America, the Republic of Korea, Association of Southeast Asian Nations, Hungary, Poland,
Czech Republic, the Slovak Republic, Slovenia, South Africa. No prior government
review or license for computer exports up to 10,000 MTOPS, with record-keeping and
reporting by U.S. companies as directed by the U.S. Government. Prior government review
and an individual license are required for HPCs above 10,000 MTOPS. Above 20,000 MTOPS,
the U.S. Government may require safeguards at the end-user location.
· Tier 3 (50 countries): the PRC,
India, Pakistan, the Middle East/Maghreb, the former Soviet Union, Vietnam, and the rest
of Eastern Europe. No prior government review or license is required for computer
exports up to 2,000 MTOPS. Prior government review and a license are required for HPC
exports for military and proliferation-related end uses and end users. No government
review or license is required for civil end users of computers between 2,000 MTOPS and
7,000 MTOPS, with record-keeping and reporting by U.S. companies as directed by the U.S.
Government. Prior government review and a license are required for HPC exports above 7,000
MTOPS to all end users. Above 10,000 MTOPS, additional safeguards may be required at the
end-user location.
· Tier 4 (7 countries): Iraq, Iran,
Libya, North Korea, Cuba, Sudan, and Syria. There is a virtual embargo on all computer
exports.113
The U.S. Government continues to implement the Enhanced Proliferation Control
Initiative, which seeks to block exports of computers of any level in cases involving
exports to end uses or end users of proliferation concern, or risks of diversion to
proliferation activities.114 Criminal as well as civil penalties apply to violators of the
Initiative.115
Export Administration Act
Provisions and Export Administration Regulations Currently Applicable to
High Performance Computers
Specific provisions of the Export Administration Act of 1979, as amended, and the
Export Administration Regulations apply to HPCs. In addition, Export Administration
Regulations that regulate dual-use exports generally apply to HPCs.
The Commerce Department's Bureau of Export Administration maintains the Commerce
Control List that includes items (commodities, software, and technology) subject to the
authority of the Bureau. HPC technology is included on the Commerce Control List under
Category 4, "Computers." HPCs specifically fall under 4A003 (which includes
"Digital computers," "electronic assemblies," and "related
equipment, and specially designed components") and D001 ("Software specially
designed or modified for the 'development', 'production' or 'use' of equipment or
'software' controlled by" various other export control categories).116
The Export Administration Regulations identify six bases for controlling HPC
technology, in order of restrictiveness. Those requiring licenses for a larger number of
countries or items are listed first:
· National security
· Missile technology
· Crime control
· Anti-terrorism
· Nuclear nonproliferation
· Computers117
The Export Administration Regulations state the terms of the Composite Theoretical
Performance license exception and the country tier structure. They also detail the new
requirements on notification, post-shipment verifications for Tier 3 countries mandated by
the Fiscal 1998 National Defense Authorization Act, and other restrictions and reporting
requirements.118
The Export Administration Regulations contain
special provisions for exports, re-exports, and certain intra-country transfers of HPCs,
including software and technology. License requirements reflected in this section are
based on particular destinations, end users, and end uses. These license requirements
supplement those that apply for other control reasons, such as nuclear
nonproliferation.119
License applications for HPC technology covered by this section are also to be reviewed
for nuclear nonproliferation licensing policy. The Commerce Department may also require
end-use certifications issued by the government of the importing country and safeguard
conditions on the license.120
The Export Administration Regulations state security conditions and safeguard plans for
the export, re-export, or in-country transfer of HPCs that the Bureau of Export
Administration may impose to certain destinations. Up to 36 safeguard conditions are
available.121 These include the following:
· Applicant's responsibility for providing
adequate security against physical diversion of the computer during shipment
· No re-export or intra-country transfer of
the computer without prior written authorization of the Bureau of Export
Administration
· Inspection of usage logs daily to
ensure conformity with conditions of the license and retention of records of these logs
for at least a year
· Independent auditing of the end user
quarterly by an independent consultant, including auditing of computer usage and
implementation of safeguards122
The Export Administration Regulations contain prohibitions against exports, re-exports,
and selected transfers to certain end users and end uses. They state that the exporter may
not export or re-export any item without a license to any destination, other than those
specified in the regulations, if at the time of the export, the exporter knows the item
will be used directly or indirectly in proscribed activities.123
These activities include nuclear, missile, chemical, and biological end uses.124 The
Export Administration Regulations define "knowledge" of a circumstance not only
as positive knowledge that the circumstance exists or is substantially certain to occur,
but also an awareness of a high probability of its existence or future occurrence.125 Such
awareness is inferred from evidence of the conscious disregard of facts known to a person,
and is also inferred from a person's willful avoidance of facts.126
The Export Administration Act provides that the Secretary of Commerce and his designees
may conduct, outside the United States, pre-license investigations and post-shipment
verifications of items licensed for export.127
The Second Stanford Study
Two of the three authors of the 1995 Stanford study were again engaged and funded by
the Departments of Commerce and Defense to prepare a second paper as a contribution to the
periodic review of HPC export controls.128
This paper, released in April 1998, concluded that rapid advances in computer
technology were continuing. However, it also suggested that a proposed change in licensing
procedure - to review each HPC at its highest attainable level, rather than its
configuration at the time of the export - would remove the concern that HPCs were being
upgraded without the knowledge of exporters or the U.S. Government.129
As of the date of this report, no further Executive branch action has been reported or
notified to Congress concerning further revisions to export controls on HPCs.
Arms Export Control Act
Provisions and International Traffic In Arms Regulations Currently Applicable to Computers
The Arms Export Control Act and International Traffic In Arms Regulations treat certain
computers differently than the dual-use computers that are regulated by the Export
Administration Act and Export Administration Regulations.130
The United States Munitions List, which is included in the International Traffic in
Arms Regulations, controls computers that have been modified for rugged conditions and
"Tempested" - made ready for secure use - specifically for military systems.131
It also controls software specifically designed for military uses and technical data,
which is often paper converted to software.132
The State Department, which has license authority over Munitions List items, restricts
the export of computers designed for military uses and does not distinguish among
computers based on MTOPS or other performance measures.133 |
Concerns Over High Performance
Computer Exporters' Ability to Review End-Users in the PRC
Prompted the Requirement for Prior Notification
The January 1996 revisions to the Export Administration Regulations governing HPCs made
several other important changes. Most importantly, they made exporters responsible for
determining whether an export license is required, based on the MTOPS level of the
computer, and for screening end users and end uses for military or proliferation
concerns.134
Thus, U.S. companies that wish to export HPCs are now authorized to determine their own
eligibility for a license exception.135
Prior to this change, only U.S. HPC exports to Japan were allowed without an individual
license. At that time, a violation of the Export Administration Regulations could be
identified by an export of an HPC that occurred without a license.
Since the change, in order to prove a violation of the regulations, the Commerce
Department must demonstrate that an exporter improperly used the Composite Theoretical
Performance license exception and knew or had reason to know that the intended end user
would be engaged in military or proliferation activities.136
Also, the revised Export Administration Regulations required that exporters keep
records and report to the Commerce Department on exports of computers with performance
levels at or above 2,000 MTOPS. In addition to existing record-keeping requirements, the
regulations added requirements for the date of the shipment, the name and address of the
end user and of each intermediate consignee, and the end use of each exported computer.
Although these records have been reported to the Commerce Department on a quarterly basis
for the past two years, some companies have reported inconsistent and incomplete data for
resellers or distributors as end users.137
Since U.S. HPCs obtained by countries of proliferation concern could be used in
weapons-related activities, the Congress enacted a provision in the Fiscal Year 1998
National Defense Authorization Act138 that required exporters to notify the Commerce
Department of all proposed HPC sales over 2,000 MTOPS to Tier 3 countries. The Act gives
the U.S. Government an opportunity to assess these exports within 10 days and determine
the need for a license. Following such notification, the Departments of Commerce, State,
Defense, and Energy, and the U.S. Arms Control and Disarmament Agency, can review a
proposed HPC sale and object to its proceeding without an export license. The Commerce
Department announced regulations implementing the law on February 3, 1998.139
A November 1998 Defense Department study,
however, identified potential problems with the 10-day notification procedure. The
study noted that the Defense Department provides comments on export notices referred to it
regarding those end users for which the Defense Department has information. The study also
noted that:
The operating assumption is that, if there is no information on the end-user, then
the end-user is assumed to be legitimate. This is probably true in most cases; however,
there is no means to verify that high performance computers are not making their way to
end-users of concern to the United States.140
Furthermore, the Defense Department study expressed concern that foreign buyers might
circumvent current Export Administration Regulations provisions requiring attestation to
the buyer's knowledge that the export will have no military or proliferation end user or
end use.141 By designating a company in the United States to act on its behalf, the
foreign company could have its U.S. designee submit the HPC notification to the Commerce
Department; the U.S. designee and not the foreign buyer would then be responsible for all
compliance with notification procedures.142 The U.S. designee would be responsible only
for shipping the item and would not take title of the item.143
Under the Export Administration Regulations, the U.S. designee could complete the
notification to its knowledge, which might be useless if the U.S. designee is in fact
ignorant of the actual end use. The Defense Department study noted the obvious problems
with this system.
The study also observed that the 10-day notification period was insufficient to ensure
that U.S. designees and foreign buyers are providing accurate and complete information.144
Finally, the Defense Department study warned that foreign buyers of U.S. computer
technology might circumvent the notification procedure by notifying the Commerce
Department that they are purchasing a system that is not above the 7,000 MTOPS threshold,
but later upgrading the system with processors that are below the 2,000 MTOPS level. There
would be no requirement to notify the Commerce Department of the acquisition of the lower
than 2,000 MTOPS upgrades to the previously-notified system.145
The U.S. Government Has
Conducted Only One End-Use Check for High Performance Computers in the PRC
The Fiscal 1998 National Defense Authorization Act now requires the Commerce Department
to perform post-shipment verifications on all HPC exports of HPCs to Tier 3 countries with
performance levels over 2,000 MTOPS.146
Post-shipment verifications are important for detecting and deterring physical
diversions of HPCs, but they do not always verify the end use of HPCs.147
The PRC traditionally has not allowed the United States to conduct post-shipment
verifications, based on claims of national sovereignty, despite U.S. Government efforts
since the early 1980s.148 This obduracy has had little consequence for the PRC, since HPC
exports have continued to be approved and, in fact, have increased in recent years.
In June 1998, the PRC agreed with the United States to cooperate and allow
post-shipment verifications for all exports, including HPCs.149 PRC conditions on the
implementation of post-shipment verifications for HPCs, however, render the agreement
useless.150 Specifically:
· The PRC considers requests from the U.S.
Commerce Department to verify the actual end-use of a U.S. HPC to be non-binding
· The PRC insists that any end-use
verification, if it agrees to one, be conducted by one of its own ministries, not by U.S.
representatives
· The PRC takes the view that U.S. Embassy
and Consulate commercial service personnel may not attend an end-use verification, unless
they are invited by the PRC
· The PRC argues scheduling of any end-use
verification - or indeed, whether to permit it at all - is at the PRC's discretion
· The PRC will not permit any end-use
verification of a U.S. HPC at any time after the first six months of the computer's
arrival in the PRC
The Select Committee has reviewed the terms of the U.S.-PRC agreement and found them
wholly inadequate. The Clinton administration has, however, advised the Select Committee
that the PRC would object to making the terms of the agreement public. As a result, the
Clinton administration has determined that no further description of the agreement may be
included in this report.
According to Iain S. Baird, Deputy Assistant Secretary of Commerce for Export
Administration within the Bureau of Export Administration, post-shipment verifications are
conducted by the PRC's Ministry of Foreign Trade and Economic Cooperation for U.S.
computers having over 2,000 MTOPS that are exported to the PRC. He says such verifications
are done in the presence of the U.S. commercial attaché.151
Commerce reported on November 17, 1998, that no post-shipment verifications would be
performed on HPCs that were exported to the PRC from November 18, 1997 through June 25,
1998 because the PRC/U.S. agreement applies only prospectively from June 26.
Since June 26, the Commerce Department
reported, only one post-shipment verification has been completed and one was pending as of
November 12, 1998. Commerce also stated that "Post shipment verifications were
not done on most of the others [HPCs] because the transactions do not conform to our
arrangement with the PRC for end use checks."152
Thus, post-shipment verifications will not be done on any HPCs exported to the PRC
prior to the agreement, nor on any HPCs shipped that are exported in the future under the
Composite Theoretical Performance license exception (that is, those between 2,000 and
7,000 MTOPS) to civilian end users.
According to Commerce Department Under Secretary for Export Enforcement William
Reinsch, a pending regulatory change will instruct HPC exporters to seek end-use
certificates from the PRC Government. Where PRC end-use certificates are obtained, this
regulation purportedly would allow more post-shipment verifications to be requested
consistent with the PRC-U.S. agreement.153
Reinsch stated that the PRC has indicated that it would be willing to issue end-use
certificates. However, the PRC office in question reportedly has a staff of five, which
would severely limit the number of post-shipment verifications it could implement.154
According to a September 1998 report from the General Accounting Office, U.S.
Government officials agreed that the manner in which post-shipment verifications for
computers traditionally have been conducted has limited their value because they establish
only the physical presence of an HPC, not its actual use. In any event, according to
national weapons laboratory officials within the Energy Department, it is easy to conceal
how a computer is being used.155
Even when U.S. Government officials perform the post-shipment verification, the
verifying officials have received no specific computer training and are capable of doing
little more than verifying the computer's location. It is possible to verify an HPC's use
by reviewing internal computer data, but this is costly and intrusive, and requires
sophisticated computer analysis.156
The General Accounting Office report also noted that the U.S. Government makes limited
efforts to monitor exporter and end-user compliance with explicit conditions that are
often attached to HPC export licenses for sensitive end users. The U.S. Government relies
largely on the HPC exporters to monitor end use, and may require them or the end users to
safeguard the exports by limiting access to the computers or inspecting computer logs and
outputs.157
The end user may also be required to agree to on-site inspections, even on short
notice, by the U.S. Government or exporter. These inspections would include review of the
programs and software that are being used on the computer, or remote electronic monitoring
of the computer.158
Commerce officials stated to GAO that they may have reviewed computer logs in the past,
but do not do so anymore, and that they have not conducted any short-notice visits. They
also acknowledged that they currently do not do any remote monitoring of HPC use anywhere
and that, ultimately, monitoring compliance with safeguards plans and their conditions is
the HPC exporter's responsibility.159
Some U.S. High
Performance Computer Exports
to the PRC Have Violated U.S. Restrictions
During the 1990s, there have been several cases of export control violations involving
computer technology shipments to the PRC. One ongoing case concerns the diversion of a Sun
Microsystems HPC from Hong Kong to the PRC.160
On December 26, 1996, a Hong Kong reseller for Sun Microsystems, Automated Systems
Ltd., sold an HPC to the PRC Scientific Institute, a technical institute under the Chinese
Academy of Sciences - a State laboratory specializing in parallel and distributed
processing. At some point after the sale but before delivery, the computer was sold to
Changsha Science and Technology Institute in Changsha, Hunan Province. The machine was
delivered directly to that Institute in March 1997.161
Automated Systems of Hong Kong claimed to Sun officials in June 1997 that it had
understood that the Changsha Institute was "an educational institute in Wuhan
Province providing technological studies under the Ministry of Education." The end
use there, according to Automated Systems, was to be for "education and research
studies in the college and sometimes for application development for outside
projects." Sun was recommended to contact the end user, the Changsha Institute, for
more specific end-use information.162
The HPC sale came to the attention of the Deputy Assistant Secretary for Export
Enforcement, Frank Deliberti. He queried the U.S. Embassy in Beijing about the Changsha
Institute. Deliberti gave the information he obtained to Sun Microsystems, which then
initiated efforts to have its computer returned.163
During the same period, the Foreign Commercial Officer at the U.S. Embassy in Beijing
consulted his contacts at the PRC's Ministry of Foreign Trade and Economic Cooperation.
The Ministry denied that the Changsha Institute was affiliated with the PRC military.164
Subsequently, the Ministry called the FCO to
inform him that the actual buyer of the computer was an entity called the Yuanwang
Corporation, and that Sun Microsystems had been aware of this corporation's PRC military
ties. Reportedly, Yuanwang is an entity of the Commission on Science, Technology, and
Industry for National Defense (COSTIND). So far as the PRC's Ministry of Foreign Trade and
Economic Cooperation reportedly could determine, the end-use statements that had been
provided to Sun through Automated Systems of Hong Kong were totally fictitious. The
Changsha Science and Technology Institute, according to the Ministry, did not exist.165
The official position of the Ministry of Foreign Trade and Economic Cooperation was
that the PRC Government would not help to obtain the return of the computer. The role of
the PRC Government, the Ministry asserted, had been merely to help two private parties
rectify a misunderstanding. In any event, the computer was returned to the United States
on November 6, 1997.166 The Commerce Department investigation reportedly is continuing.167
A number of other violations of U.S. laws and regulations concerning computers exported
to the PRC have been investigated by the Commerce Department:
New World Transtechnology
On December 20, 1996, New World Transtechnology of Galveston, Texas, pled guilty to
charges that it violated the export control laws and engaged in false statements by
illegally exporting controlled computers to a nuclear equipment factory in the PRC in
August 1992. The company was also charged with attempting to illegally export an
additional computer to the PRC through Hong Kong in October 1992. The company was
sentenced to pay a $10,000 criminal fine and a $600 special assessment fee.168
Compaq Computer Corporation
On April 18, 1997, the Commerce Department imposed a $55,000 civil penalty on Compaq
Computer Corporation of Houston, Texas, for alleged violations of the Export
Administration Regulations. The Commerce Department alleged that, on three separate
occasions between September 17, 1992 and June 11, 1993, Compaq exported computer equipment
from the United States to several countries, including the PRC, without obtaining required
export licenses. Compaq agreed to pay the civil penalty to settle the allegations.169
Digital Creations
On June 12, 1997, Digital Creations Corporation of Closter, New Jersey, was sentenced to
pay an $800,000 criminal fine for violating the Export Administration Act and Regulations
in connection with exports of computers to the PRC. Digital had previously pled guilty in
December 1994 to charges that it had violated the Export Administration Regulations by
illegally exporting a Digital Equipment Corporation computer to the PRC without obtaining
the required export license.170
Lansing Technologies Corporation
On June 17, 1997, Lansing Technologies Corporation, of Flushing, New York, pled guilty to
charges that it violated the Export Administration Regulations in 1992 by exporting a
Digital Equipment Corporation computer vector processor and a data acquisition control
system to the PRC without obtaining the required export licenses from the Commerce
Department.171
Other serious violations of HPC export control laws and regulations have occurred in
recent years, but these concerned Russia. On July 31, 1998, for example, the Department of
Justice announced that IBM East Europe/Asia Ltd. entered a guilty plea. IBM received the
maximum allowable fine of $8.5 million for 17 counts of violating U.S. export laws through
the sale of HPCs to a Russian nuclear weapons laboratory known as Arzamus-16. In another
example, an ongoing U.S. Government investigation of Silicon Graphics Incorporated/Convex
is examining whether a violation of law occurred in a sale of HPCs to another Russian
nuclear weapons laboratory, Chelyabinsk-70.172
High Performance Computers
at U.S. National Weapons Laboratories
Are Targets for PRC Espionage
No other place in the world exceeds the computational power found within the U.S.
national weapons laboratories. For this reason, both the computational power and the data
it can generate have been the focus of the PRC's and other countries' intelligence
collection efforts.
The desire for access to this computing power and data, in turn, is one of the reasons
so many foreign nationals want to visit the laboratories.
According to David Nokes, the network administrator at Los Alamos National Laboratory,
all operating systems have vulnerabilities that can be exploited by a knowledgeable, valid
user.173 Nokes also says that there are a few solutions to issues of HPC network security.
These include:
· Allowing only U.S. students to use the
networks
· Limiting physical access to high
performance computer networks at universities
· Enhancing physical security and security
education at universities174
U.S. National Weapons
Laboratories Have Failed
to Obtain Required Export Licenses for
Foreign High Performance Computer Use
When foreign nationals use the U.S. national weapons laboratories' HPCs, their
activities should generally be considered "deemed exports." The "deemed
export" rule [15 CFR 734.2 (b) (ii)] covers those situations in which an
export-controlled technology or software-source code information is released to a visiting
foreign national, for which a license would have been required. In such situations, an
"export" is "deemed" to have occurred.
The Select Committee is concerned that HPC system managers in the U.S. national weapons
laboratories lack an essential understanding of the deemed export rule. This lack of
understanding was substantiated by interviews with representatives from the Department of
Commerce who had no recollection of ever having seen an application for a deemed export
from any of the U.S. national weapons laboratories.
When PRC nationals visit and use the HPCs at a U.S. national weapons laboratory, their
access should be limited to the same computing capabilities to which the PRC itself is
restricted, especially for military uses.175 The Select Committee discovered, however,
that the laboratories do not even measure the computational power of their HPCs in MTOPS.
Moreover, many of the laboratories have difficulty in converting to MTOPS from the units
they use to measure the power of an HPC.
The Department of Commerce could not recall a
laboratory ever having sought guidance on how to compute an HPC's MTOPS rating. Significantly,
the Select Committee discovered that a rather modest HPC (by Department of Energy
standards) in a U.S. National Laboratory used by foreign nationals had a substantially
higher MTOPS rating than the controlled threshold. No licenses, however, had ever been
obtained.
The "deemed export" rule also applies in those instances in which a PRC
national or entity accesses an HPC remotely via the Internet.
In the absence of an effective audit system, which monitors the codes being run by the
PRC user, the U.S. national weapons laboratories cannot verify that they are in compliance
with the law, or that PLA or PRC intelligence is not using the HPCs for the design or
testing of nuclear or other weapons.
PRC Students Have U.S.
Citizen-Like Access To High Performance Computers at the National Weapons Laboratories
The U.S. national weapons laboratories rely upon nuclear weapons test simulation
software and computers provided by the Accelerated Strategic Computer Initiative (ASCI).
Five major U.S. universities support ASCI through the Academic Strategic Alliances Program
(ASAP).
As a result, hundreds of research students and staff at these universities have access
to the HPCs used by the national weapons laboratories for U.S. nuclear weapons research
and testing. As many as 50 percent of these research students and staff are foreign
nationals, some of whom may have foreign intelligence affiliations.
Holders of Immigration and Naturalization Service "green cards" - PRC
nationals who have declared their intent to remain permanently in the U.S. - are treated
as U.S. citizens for export control purposes. They are then given U.S. citizen-like HPC
access, free to return to the PRC once their objectives are fulfilled.
In November 1998, the Secretary of Energy issued an Action Plan that includes a task
force to review HPC usage by foreign nationals and provide a report to the Secretary
within six months. The Department of Energy is currently preparing an implementation plan
to address counterintelligence issues identified in a July 1998 report, entitled
"Mapping the Future of the Department of Energy's Counterintelligence Program,"
including HPC usage by foreign nationals.
Many Types of Computer Technology
Have Been Made Available to the PRC
That Could Facilitate Running Programs
Of National Security Importance
One of the bases for the 1996 increase in export control thresholds was that individual
PCs were widely available on the open market in the United States, but not able to be
exported to the potentially huge PRC market.176 What was an HPC in 1993 (those capable of
195 or more MTOPS) was no longer even considered necessary to control for weapons
proliferation concerns.177
By 1997, PCs and workstations assembled in the PRC captured approximately 60 percent of
the PRC's domestic market.178 All of these locally-assembled computers used imported parts
- over 70 percent contained United States-produced Pentium microprocessors.179
Three of the largest manufacturers in the PRC were affiliates of IBM, Hewlett Packard,
and Compaq, with a combined market share of approximately 21 percent.180 A large share
(but probably not more than 20 percent) of the PC assembly in the PRC was done by small,
independent assembly shops.181
The largest individual producer of PCs and workstations in the PRC is the Legend
enterprise, a spin-off of the Chinese Academy of Sciences.182 This domestic computer
assembly industry dovetails well with Beijing's overall plans for economic modernization.
Beijing reportedly desires an independent PRC source of most high-technology items to
avoid reliance on foreign providers for these goods.
To participate more fully in the PRC market,
United States firms have been pressured by the PRC government to relinquish technological
advantage for short-term market opportunities. The PRC requires that foreign firms be
granted access to the PRC market only in exchange for transferring technology that would
enable the state-run enterprises to eventually capture the home market and begin to
compete internationally.
However, the PRC's strategy of coercing technology from foreign firms has not enabled
state-run industries to close the technology gap with more developed nations. In the
context of establishing domestic production of computers for sale in the PRC, this PRC
"technology coercion" policy appears to have worked.183 The PRC now has a
growing industrial base of small computer assemblers. For the most part, these companies
are not State-run. The technology that was "coerced" from U.S. computer
manufacturers as a cost of entering the PRC market apparently better serves the expansion
needs of small, relatively independent enterprises and not the intended needs of central
planners in Beijing.
90 percent of PRC consumers of PCs and workstations are business, government, and
educational entities, with individual purchases accounting for only 10 percent of the
PRC's PC market.184 To illustrate the size of the individual purchaser segment of the
PRC's market, it is estimated that only 5 million individuals out of the PRC's 1.2 billion
have the expendable funds required to purchase a low-end PC in the PRC.185
Despite the limited number of individual purchasers, the actual size of the PRC PC and
workstation market was 2.18 million units in 1996; 3 million units in 1997; and 4.5
million units in 1998. It is anticipated the PRC PC and workstation market will grow at
the rate of 1.5 million to 2 million units per year through the year 2000. According to
figures provided by the Asia Technology Information Project, an independent research
foundation, non-PRC manufacturers of PCs and workstations, including U.S. manufacturers,
could expect to partake of a portion of the almost 2 million units expected to be imported
for sale in the PRC in 1998.186
The PRC Has a Limited Capability to Produce High
Performance Computers
The PRC has demonstrated the capability to produce an HPC using U.S.-origin
microprocessors over the current threshold of 7,000 MTOPS. The PRC "unveiled" a
10,000 MTOPS HPC - the Galaxy III - in 1997 based on Western microprocessors.
But PRC HPC application software lags farther behind world levels than its HPC systems.
Also, despite the existence of a few PRC-produced HPCs based on Western components, the
PRC cannot cost-effectively mass-produce HPCs currently. There really is no domestic HPC
industry in the PRC today.
While it is difficult to ascertain the full measure of HPC resources that have been
made available to the PRC from all sources, available data indicates that U.S. HPCs
dominate the market in the PRC.187
Although the PRC has a large market for workstations and high-end servers, there is a
smaller market for parallel computers which is entirely dominated by non-PRC companies
such as IBM, Silicon Graphics/Cray, and the Japanese NEC. However, there continues to be
significant market resistance to Japanese HPC products in Asia, especially as U.S.
products are beginning to have significant market penetration.188
U.S. High Performance Computer Exports
To the PRC Are Increasing Dramatically
A review of Commerce Department information regarding the total of HPC license
applications that were received for the time frame January 1, 1992 to September 23, 1997,
revealed the following:
· Only one HPC export license to Hong Kong
(with a value of $300,000) was rejected
· 100 HPC export licenses to the PRC (with a
total value of $11,831,140) were rejected by Commerce
· 37 HPC export licenses to Hong Kong (with
a total value of $55,879,177) were approved
· 23 HPC export licenses to the PRC for HPCs
within the 2,000 to 7,000 MTOPS range (with a total value of $28,067,626) were approved
· Two of the 23 HPC export licenses to the
PRC for HPCs within the 11,000 to 12,800 MTOPS range (with a total value of $2,550,000)
were approved in 1998189
The approximate total value of the HPCs exported, of whatever description, to both Hong
Kong and the PRC, for the six-year period ending September 23, 1997, was only $86
million.190
The nine-month period between January 1998 and September 1998, however, saw U.S.
exporters notify the Commerce Department of their intention to export 434 HPCs (in the
2,000 to 7,000 MTOPS range) to the PRC (total value $96,882,799).191 Nine times the number
of HPCs were exported in one-ninth the time.192
During approximately the same time frame (calendar year 1998) it is estimated that
9,680,000 individual PCs and workstations were sold in the PRC. The market share that U.S.
exporters could reasonably expect to benefit from was approximately 3,872,000 units, worth
approximately $1.8 billion.193
Apparently, the proximate cause of U.S. computer manufacturers aggressively lobbying
for the raising and maintaining of export thresholds above the PC level was to capture
this $1.8 billion per year market share.
The United States dominates the PRC's HPC market, but U.S. exports clearly do not
dominate the PRC's personal computer and workstation market.194 The difference between the
460-unit, $100 million HPC market described above, stretched over a six-year period, and
the yearly 3.8 million-unit PC and workstation market, with a value of $1.8 billion, is
dramatic.
The performance levels of U.S. HPCs reported to be exported to the PRC over the past
year continued to be predominantly in lower-end machines, as shown in the following table.
For example, 77 percent of U.S. HPCs (a total of 388 machines) have performance levels
below 4,000 MTOPS.
The PRC Is Obtaining Software
From U.S. and Domestic Sources
In June 1997, it was estimated that 96 percent of software programs sold in the PRC
were pirated versions of commercially available U.S. programs. These programs were
designed for use on PCs and workstations, and are not considered useful for the very
sophisticated programming done on HPCs.
Some major U.S. software producers have begun contracting with PRC programming firms.
These PRC software firms are comprised of recently-graduated PRC university students. They
are attempting to write programs in Chinese to capitalize on a huge domestic market.196
Two factors mitigate against the success of the PRC developing its domestic programming
industry.
The first factor is that street-level "software pirates" sell dozens of U.S.
computer programs at a time on one CD-ROM for a small fee (reportedly $20). In other
words, one can meet most or all of one's programming needs in the PRC for a nominal fee.
It is anticipated that it will be difficult, if not impossible, for a domestic software
industry to recoup the start up costs associated with just one software program, let alone
the dozens needed to compete with the street level dealers.
The second factor is that these pirated U.S.-produced, English language programs are
more mature, widespread, and robust than PRC programs.197 It is axiomatic that any new
product will have "bugs in the system." It is considered unlikely that new,
unproven, and possibly weak software programs will effectively compete with cheap, proven,
and robust software that is widely available at such nominal fees. It is conceivable that
the PRC will abandon instituting a domestic programming industry altogether.198
Potential Methods of
Improving End-Use Verification
According to a 1996 RAND study, there are non-intrusive and intrusive approaches to
assessing the manner in which a buyer is actually applying dual-use technologies. Among
the non-intrusive methods are:
· Memoranda of understanding and agreements
· National technical means of verification
· Limitations designed into the transferred
technologies
· Transparency measures
Among the intrusive methods are:
· Inspections
· Tagging199
Tagging
Tagging is achieved by attaching an active system to the item that is to be exported,
rather than just a passive tag for identification during an inspection. The active system
would both monitor the object tagged and communicate that information back to the United
States. The RAND study noted that in practice, this means the objects to be tagged must be
physically large systems, such as a machine-tool cell, or a major component of some larger
system, such as a turbine engine in a helicopter.200
According to the RAND study, the tag should be capable of at least communicating
information about the item's physical location. Some sensors may provide other kinds of
information, as well. The information could be communicated to a satellite or over a data
link. Early versions of such devices were already in use in 1996 to monitor nuclear
materials and technologies.201
These "smart" tags exploit the potential of several technologies, according
to the RAND study. They combine encryption, the Global Positioning System, and emerging
global wireless communications systems, such as Iridium or Orbcomm. These technologies
would allow the tags to report back on the status and location of the tagged object. In
principle, such tags could report the position of an object at any given time in order to
verify limitations on their location. Such tags could also report on the activities of a
"smart" system to which they are attached. For example, a machine-tool cell
could report whether the machine had been used to make parts resembling aircraft
components.202
Such tags could have many applications in a cooperative regime. Their application and
use in a prohibited environment would be more difficult and consequential.203
The RAND study cautioned that all sellers of a particular technology must participate
in the tagging and that this would probably also require cooperation of the buyers.
Otherwise, buyers would gravitate to untagged items, if they were available. Attempts to
conceal system location or deviate from a pattern of cooperation would be considered
evidence of a potential failure of performance by the buyer. The study concluded that
tagging may become an important oversight method for controlling technology transfers, but
that it should never become the sole means of oversight.204
Technical Safeguards
In 1994 several types of technical safeguards were in advanced development in the
United States. The technologies required for these safeguards were expected to enter
testing within the next two years. They included:
· Controlled-execution UNIX - a modified
computer operating system that could run only certain pre-approved programs; likely to be
most useful for computers sold to facilities such as weather-forecasting centers, oil
companies, automobile manufacturers, and banks
· "Black box" monitoring hardware
- inexpensive, secure, long-term audit recording devices, possibly based on write-once
optical storage units that could be embedded in mass-produced workstations; analogous to
the black box flight-data recorders that are installed in aircraft and used for post-crash
accident analysis
· "Meltdown" software -
modified operating system programs designed to require updating by the manufacturer at
fixed times; if not updated, the computer refuses to run
· Automated auditing tools -
pattern-recognition or rule-based software; would assist monitoring agencies to more
effectively inspect huge collections of data from system activity logs and detect the
(presumably few) incidents worth detailed analysis
Although these technical safeguards seem feasible, none had been proved to be
inexpensive, sensitive enough to detect most illegal activity, and difficult to circumvent
by determined adversaries. The auditing tools under development showed great promise,
however. Authorities were pessimistic about the likelihood that technical high-performance
computer safeguards would be widely adopted and able to succeed in the near future.
Other Possibilities
Officials of the Mitre Corporation made several suggestions to strengthen U.S. national
security in the context of HPC export controls. These included:
· Improving and enforcing end-use and
end-user verification
· Controlling embedded HPC systems that are
useful in military applications
· Monitoring or precluding the expansion
capability of computer hardware
· Marketing aggressively all generic
computing capabilities, such as scanning, to the PRC to maximize profits and to keep
the PRC market-dependent on the United States
· Focusing on control of any hardware,
software, tools, and services that uniquely support PRC military applications that are
strategic in nature or could facilitate the tactical turning point in a conflict205
Technical Afterward
CHANGING HIGH PERFORMANCE
COMPUTER TECHNOLOGY
IS MAKING EXPORT
CONTROL MORE DIFFICULT
New designs in HPCs and systems of computers, as well as availability of more advanced
and less costly processors, software, and peripheral equipment, is rendering the challenge
of applying export controls to HPCs more difficult.
For certain types of computer designs, the ability to add processors or boards could
increase the machine's performance beyond authorized levels. In addition, advances in
computer processor communications technology have facilitated the clustering of personal
computers and workstations into effective parallel computers.
The usefulness of clustered computers is application-dependent. Some U.S. Government
and computer industry experts have concluded that for many problems, networks of
workstations could not compete with appropriately designed high performance computers.206
Most traditional HPCs achieve far greater efficiency than parallel machines, due to their
use of custom-made components.
Foreign access to high performance computers through networks is possible because of
inadequate security measures.
Vector Architectures
Vector architecture relies on custom-designed processors to move a complex problem
through computer processing units in sequential stages. This type of machine is designed
to handle arithmetic operations efficiently on elements of arrays, called vectors.207
Vector systems are especially useful in high-performance scientific computing.208
Vector systems, also called "pipeline" architectures, work like an assembly
line. They work best with many similar tasks that can be broken down into steps.
The memory interface in vector machines is custom-made, and subject to export controls.
Vector machines are useful for cryptography,
modeling fluids, and in the design of weapons. In particular, vector systems are
suited to problems in which data at one point influence other variables in the problem, a
common situation in national security applications.209
It is more straightforward for a programmer to use a vector system than a system
comprised of parallel processors (discussed below), since it is easier to obtain maximum
performance with one or a few high-power processors than with a collection of many lower
capability processors.210
Since one of the main concerns with any HPC system is the rate of speed with which data
can be retrieved from memory, another advantage is that a vector machine has a very fast
memory.211
Still further advantages of vector systems are that they feature high memory bandwidth
and low memory latency - that is, very large amounts of data can travel to and from memory
very efficiently. A related advantage is that vector systems have the ability to seek
multiple memory locations at the same time. This translates into very fast computational
speed.
A disadvantage of a vector machine is that vector system software is not really
portable. It cannot be readily transported to other vector machines.212
The main disadvantage of vector systems, however, is their high cost. Significant
improvements in software and hardware allow the purchase of a parallel processing system
for $40,000, as opposed to $1 million for a comparable vector computer.213
At the Defense Department's High Performance Computer Management Office, vector systems
are being phased out in favor of parallel processing systems. Out of a total of 40 HPCs in
the High Performance Computer Management Office inventory, fewer than 10 are now vector
systems.214
Parallel Processing: The Connection of Computers Into a Powerful Central Resource
A parallel processing computer is a collection of processors that are connected through
a communications network.215 The type of processor, the network configuration, and the
operating system that coordinates the activities distinguish parallel processing systems.
Many national security applications involve problems that can be separated into
independent variables, and it is for these types of problems that parallel processing is
best suited.216
The fastest parallel machines are all based on commodity processors - that is,
processors that are commercially available on the market.217 This approach has been
applied to virtually every area of theoretical and applied physics.218
Massively Parallel Processors
A massively parallel processor is a collection of computers, or central processing
units, linked together.219 Each computer that is part of the whole massively parallel
processor has its own memory, input/output system, and central processing unit.220
Massively parallel processors now use commodity processors, and can utilize commodity
interconnects to communicate between the individual computers that make up the system.221
Some massively parallel processors use custom-made, very fast interconnect switches that
are not commodities and are subject to export control.222
An advantage of a massively parallel processor is that an unlimited quantity of
processors can be incorporated into the design of the machine. In a massively parallel
processor, the more processors, the greater the computing speed of the machine.223
Because each processor is equipped with its own memory, massively parallel processors
have much more memory than traditional supercomputers. The extra memory, in turn, suits
these machines to data-intensive applications, such as imaging or comparing observational
data with the predictions of models.224
A disadvantage of massively parallel
processors is that memory latency is a bigger problem because the processors have to share
the available memory. Another disadvantage is that each one of the computers that is
part of the system has to be instructed what to do individually.225 This phenomenon
requires specialized, extremely proficient programmers to create efficient communications
between the individual computers.
The commercial availability of inexpensive, powerful microprocessors has given
massively parallel processors a boost in their competition with vector machines for the
supercomputer market. IBM, for example, more than doubled the number of its computers in
the Top 500 list (discussed below) between November 1997 and June 1998 by introducing the
SP2, which strings together up to 512 of the company's RSI6000 workstation
microprocessors.226
If optimum speed is desired, this massively parallel configuration is the best of all
HPC designs.227 The fastest high performance computer now available is the ASCI Blue
Pacific.228 That machine is part of the Department of Energy's Accelerated Strategic
Computing Initiative (ASCI) program and is located at Lawrence Livermore National
Laboratory. Developed in conjunction with IBM, it is a 5,856-processor machine, boasting a
top speed of 3.8 teraflops229 (Tflops) with 2.6 terabytes (Tbytes) of memory.230 In the
next phase of the ASCI initiative, IBM will deliver a 10-Tflops machine to the Department
of Energy in mid-2000.231
Symmetrical Multiprocessor Systems
Symmetrical multiprocessor systems use multiple commodity central processing units
(CPUs) that are tightly coupled via shared memory. The number of processors can be as low
as two and as many as about 128.232
Symmetrical multiprocessor systems treat their multiple CPUs as one very fast CPU.233
The CPUs in a symmetrical multiprocessor system are arranged on a single motherboard and
share the same memory, input/output devices, operating system, and communications path.
Although symmetrical multiprocessor systems use multiple CPUs, they still perform
sequential processing,234 and allow multiple concurrent processes to be executed in
parallel within different processors.235
An advantage of symmetrical multiprocessor systems is that the programming required to
control the CPUs is simplified because of the sharing of common components.236
Another major advantage is cost. A Silicon Graphics symmetrical multiprocessor system,
for example, with 18 microprocessors, each rated at 300 megaflops (MFLOPS)237 or more, and
a peak speed of more than 5 gigaflops (GFLOPS), costs about $1 million, whereas a Cray C90
costs about $30 million.238
Even though the Silicon Graphics machine is about a third as fast as the Cray machine,
it is still very popular with consumers of these types of machines. The University of
Illinois Supercomputing Center reportedly likes the price, flexibility, and future promise
of symmetrical multiprocessor systems so much that it plans to use them exclusively within
two years. Its older Crays were "cut up for scrap" at the beginning of this
year, and its massively parallel computers will be phased out by 1997.239
One disadvantage of a symmetrical
multiprocessor system is that all the CPUs on a single board share the resources of that
board. This sharing limits the number of CPUs that can be placed on a single board.240
Although the programming model that a symmetrical multiprocessor system provides has
proved to be user-friendly, the programmer must exercise care to produce efficient and
correct parallel programs. To limit latency in individual jobs, most software requires
enhancement - for example, employing special programming techniques to prevent components
of the computer program from competing for system resources - thereby increasing
inefficiency.
For this reason, symmetrical multiprocessor systems are not good platforms for
high-performance real-time applications.241
In a symmetrical multiprocessor system design, as is true with a massively parallel
processor system, the number of CPUs determines how fast a machine potentially will
operate. This fact causes a problem for export controls because it is possible to add CPUs
to the boards of a symmetrical multiprocessor system, or boards to a massively parallel
processor system, and push the machine over export control thresholds after the original
export-licensed purchase.242
Clusters of Commercial Off-the-Shelf
Computers and Networks
Recent advances in the process of computer-to-computer communication, or networking,
allow computers to be linked together, or "clustered." Networking has allowed
the clustering of personal computers and workstations into well-balanced effective
parallel computers, with much higher computing capabilities than any one of the clustered
computers.243
Four thresholds have been crossed in connecting commercial-off-the-shelf components to
create parallel computers:
· Using commercial-off-the-shelf components
to create parallel computers is simple because of the ease of hardware configuration
and the availability of all necessary system software from market vendors
· It is versatile because a wide range of
possible network designs with excellent communication characteristics and scalability
to large sizes is now available
· Clustered systems performance has now
matured to the point that network communication speed is within 50 percent of that in
vendor-assembled parallel computers244
· Commercial-off-the-shelf clusters are now
affordable
According to officials at the Lawrence Livermore National Laboratory, networking
represents only a 10 percent additional cost over the cost of the computing hardware for
large systems. Thus, up to approximately 50,000 MTOPS, the computing capability available
to any country today is limited only by the amount of money that is available to be spent
on commercial-off-the-shelf networking.245
A typical commercial-off-the-shelf networking technology contains five essential
elements. They are all inexpensive and widely available. The three hardware elements are
switches (approximate cost: $2,000), cables (approximate cost: $100), and interface cards
(approximate cost: $1,500). The two software elements are low-level network drivers for
common operating systems, and industry standard communication libraries. The hardware and
software technology necessary to successfully cluster commercial-off-the-shelf CPUs into
effective parallel computers is well developed and disseminated in open, international
collaborations worldwide.246
The concept of clustering commercial-off-the-shelf computers has been a subject of open
academic study for over a decade. Today, the Beowulf Consortium acts as a focal point for
information on clustering technology and has links to many projects. One Beowulf project
is the Avalon computer at Los Alamos National Laboratory. Avalon can operate at 37,905
MTOPS247 and was built in four days in April 1998 entirely from commodity personal
computer technology (70 DEC Alpha CPUs) for $150,000.
Although commercial-off-the-shelf networking technology has only recently become
effective, it has been adopted rapidly. There currently are at least seven competing
high-performance network technologies (over 100 megabytes per second or higher): Myrinet,
HIPPI, FiberChannel, Gigabit Ethernet, SCI, ATM, and VIA. One network vendor reported over
150 installations in the United States and 17 foreign countries including Australia,
Brazil, Canada, the Netherlands, England, France, India, Israel, Italy, Japan, the
Republic of Korea, and the PRC.248
Gigabit Ethernet is of particular interest because it is being developed by a
cooperative, worldwide industry effort called the Gigabit Ethernet Alliance. 74 companies
have pledged to develop products for the open standard - that is, the source software is
available openly to software developers. Foreign companies are alliance members and also
participate as members of the steering committee and the certification process for
compliance. Gigabit Ethernet is projected to be a $3 billion market by the year 2000,
which at today's prices translates into approximately 300,000 network switches per
year.249
On October 15, 1997, a group of experts met
to discuss computer performance metrics for export control purposes. The computer and
high-tech industries were represented by Hewlett-Packard, Silicon Graphics/Cray Research,
IBM, Digital Equipment Corporation, Intel, Sun Microsystems, the Center for Computing
Sciences, the Institute for Defense Analyses, and Centerpoint Ventures. The U.S.
Government was represented by the National Institute of Standards and Technology, the
Naval Research Laboratory, the Defense Advanced Research Projects Agency, the National
Security Agency, Lawrence Livermore National Laboratory, the Defense Technology Security
Administration, and the Department of Commerce Bureau of Export Administration.250
The consensus of the discussion was that commercial-off-the-shelf networking is not so
significant a threat to replace HPCs as might at first appear to be the case:
Networks of workstations using [commercial-off-the-shelf] networking technology
differ from supercomputers. Some problems will run easily and effectively on such
networks, while other classes of problems important to national security concerns will not
run effectively without a major software redesign effort. For many problems no amount
of software redesign will allow networks of workstations to compete with appropriately
designed high performance computers.
Even if a "rogue state" assembled such a large network of workstations
by legitimately acquiring large numbers of commodity processors, the actual effort to
produce the software necessary to realize the full potential of such an aggregate system
would take several years. During this time, the state of the art of computational
technology would have increased by approximately an order of magnitude.
After considerable discussion, most of the participants were in
agreement that there was a fundamental difference between a system designed by a single
vendor that was built as an aggregate of many commodity processors and included the
software to enable these processors to cooperatively work on solving single problems of
national concern, and a large collection of commodity processors not subject to export
control that are externally networked together.251
According to one expert, many universities have clustered systems, as they are easy to
establish. For $70,000, a 12-node system with two Pentium II processors at 300 megahertz
(MHz) each would produce a system with 7,200 GFLOPS.. However, the system must be properly
structured to perform well, and performance will vary depending on the application, the
programmer's ability, and the connection of the machines. An integrated system from
Silicon Graphics/Cray will achieve between 10-20 percent of peak performance at best.252
An example of a powerful commercial-off-the-shelf network can be found at the Illinois
Supercomputing Center. Four eight-processor and two 16-processor machines from Silicon
Graphics are connected in a cluster with a peak speed of nearly 20 GFLOPS.253
According to one expert, it does not require any special expertise to network
workstations using commercial-off-the-shelf technology. The software engineering
techniques are being taught to undergraduates as part of standard courses in advanced
computing, but anyone with programming knowledge should be able to create a network as
well.254
The parallel supercomputers of today have peak speeds of over 100 billion floating
point operations per second (100 GFLOPS). This is roughly 100 times the peak speed of a
Cray YMP class machine, which was the standard for high-performance computing of just five
years ago.255
However, it is difficult to achieve a high percentage of this peak performance on a
parallel machine.
Whereas a tuned code running on a Cray might
reach 80-90 percent of peak speed, codes running on parallel computers typically execute
at only 10-20 percent of peak.256 There are two reasons for this:
· The first is that Cray-class computers
incorporate extremely expensive, custom-designed processors with vector-processing
hardware. These processors are designed to stream large amounts of data through a
highly efficient calculational pipeline. Codes that have been tuned to take advantage of
this hardware ("vectorized" codes) tend to run at high percentages of peak
speed.257
Parallel machines, on the other hand, are generally built from much simpler building
blocks. For example, they may use the same processors that are used in stand-alone
computer workstations. Individually, these processors are not nearly so sophisticated or
so efficient as the vector processors. Thus, it is not possible to achieve so high a
percentage of peak speed.258
Some parallel machines contain custom processors (TMC CM-5 vector units) or custom
modifications of off-the-shelf processors (Cray T-3D modified DEC alpha chips). Even in
those cases, however, the percent of peak achievable on a single node is still on the
order of 50 percent or less. In parallel computer design, there is constant tension
between the need to use commodity parts as the computational building blocks in order to
achieve economies of scale, and the desire to achieve ever-higher percentages of peak
performance through the implementation of custom hardware.259
· The second reason that parallel computers
run at lower percentages of peak speeds than vector supercomputers is communications
overhead. On parallel computers, the extraordinary peak speeds of 100 GFLOPS or more
are achieved by linking hundreds or even thousands of processors with a fast
communications network.
Virtually all parallel computers today are "distributed memory" computers.
This means that the random access memory (RAM) is spread though the machine, typically 32
megabytes at each node. When a calculation is performed on a parallel machine, access is
frequently needed to pieces of data on different nodes.
It may be possible to overlap this communication with another computation in a
different part of the program in order not to delay the entire program while waiting for
the communication, but this is not always the case. Since the timing clock continues while
the communication is taking place, even though no calculational work is being performed,
the measured performance of the code goes down and a lower percentage of peak performance
is recorded.260
Domain Decomposition
"Domain decomposition" involves partitioning the data to be processed by a
parallel program across the machine's processors.261
In distributed memory architectures, each processor has direct access only to the
portion of main memory that is physically located on its node. In order to access other
memory on the machine, it must communicate with the node on which that memory is located
and send explicit requests to that node for data.262 Figuring out the optimal domain
decomposition for a problem is one of the most basic and important tasks in parallel
computing, since it determines the balance between communication and computation in a
program and, ultimately, how fast that program will run.263
Memory access constitutes an inherent bottleneck in shared-memory systems.264
Highly Parallel Technology
Microprocessor-based supercomputing has brought about a major change in accessibility
and affordability. Massively parallel processors continue to account for more than half of
all installed supercomputers worldwide, but there is a move toward shared memory,
including the use of more symmetrical multiprocessor systems and of distributed-shared
memory. There is also a tendency to promote scalability through the clustering of shared
memory machines because of the increased efficiency of message passing this offers. The
task of data parallel programming has been helped by standardization efforts such as
Message Passing Interface and High-Performance Fortran.265
Highly parallel technology is becoming popular for the following reasons. First,
affordable parallel systems now out-perform the best conventional supercomputers. Cost is,
of course, a strong factor, and the performance per dollar of parallel systems is
particularly favorable.266 The reliability of these systems has greatly improved. Both
third-party scientific and engineering applications, as well as business applications, are
now appearing. Thus, commercial customers, not just research labs, are acquiring parallel
systems.267
Twice a year the "Top 500 list," a compendium of the 500 most powerful
computer systems, is published.268 On the previous page is an example of the numbers and
types of systems in the biannual list of the top 500 fastest computers. As this chart
points out, massively parallel processors and symmetrical multiprocessor systems are on
the rise, while vector systems are losing ground.269
Microprocessor Technology
While vector and massively parallel computers have been contending for the
supercomputing market, an important new factor has become the availability of extremely
powerful commodity microprocessors, the mass-produced chips at the heart of computer
workstations.
Ten years ago, workstation microprocessors were far slower than the processors in
supercomputers. The fastest microprocessor in 1988, for example, was rated at one million
floating point operations per second (MFLOPS) while Cray's processors were rated at 200
MFLOPS.270 A floating-point operation is the equivalent of multiplying two 15-digit
numbers. Today, Cray's processors have improved by a factor of ten, to two gigaflops in
the brand-new T90; but the fastest microprocessor runs at 600 MFLOPS, an improvement by a
factor of 600.
Commercial off-the-shelf microprocessor power is available for a fraction of the cost
of a traditional vector processor. Unlike vector processors, which consist of complex
collections of chips and are only fabricated by the hundreds each year, commercial
off-the-shelf microprocessors are designed for mass production based on two decades of
experience making integrated circuits. Research and development costs for each commercial
off-the-shelf microprocessor are spread over hundreds of thousands of chips.271
Microprocessors, also known as CPUs, are integrated circuits. They can be divided into
broad categories of logic family technologies. The selection of a certain logic technology
in the design of an integrated circuit is made after determining an application and
weighing the advantages of each type of logic family. Among these are:
· Emitter-Coupled Logic (ECL) is used
for circuits that will operate in a high-speed environment, as it offers the fastest
switching speeds of all logic families; it is the first type HPC chip. ECL, however, is
power-hungry, requires complex cooling techniques, and is expensive.272
· Complementary Metal-Oxide Semiconductor
Logic (CMOS) is relatively inexpensive, compact and requires small amounts of power.
CMOS off-the-shelf is the standard PC or workstation chip; proprietary CMOS is
custom-built, specially designed for the particular HPC and incompatible with PCs and
workstations.
Realizing the differences between logic technologies gives a perspective to
understanding where CPU technology is headed, and the reasons that the market is driving
one technology faster than another. As the following chart illustrates, commercial
off-the-shelf, inexpensive CPUs are coming to dominate the high performance computing
world.273
Interconnect Technology
In multiprocessor systems, actual performance is strongly influenced by the quality of
the "interconnect" that moves data among processors and memory subsystems.274
Traditionally, interconnects could be grouped into two categories: proprietary
high-performance interconnects that were used within the products of individual vendors,
and industry standard interconnects that were more readily available on the market, such
as local area networks.275 The two categories featured different capabilities, measured in
bandwidth and latency.
Recently, a new class of interconnect has emerged: clustering interconnects. These
offer much higher bandwidth and lower latency than local area networks. Their shortcomings
are comparable to proprietary high-performance interconnects, including lower bandwidth,
higher latency, and greater performance degradation in large configurations or immature
system software environments.276
Message Passing Interface
Message Passing Interface (MPI) is a program containing a set of sub-routines that
provide a method of communication that enables various components of a parallel computer
system to act in concert. The communications protocol that MPI uses is the same utilized
by the Internet. According to Dr. Jeff Hollingsworth of the University of Maryland
Computer Science Department, an example of how each of the different software applications
interact with the hardware would be as follows:277
Application (Code)
MPI
TCP/IP
Linux
Windows NT (Operating system)
Hardware
Some software, says Hollingsworth, is sold in a version that is compatible with MPI.
One example is automobile crash simulation software. This software, which is essentially
code to simulate a physical system in three dimensions, is adaptable to other scientific
applications such as fluid dynamics, according to Hollingsworth.278
Hollingsworth states that software that is not already "MPI ready" can be
modified into code that can be run in an MPI, or parallel, environment. Modifying this
software to enable it to run in an MPI environment can be very difficult, or quite easy,
says Hollingsworth, depending on "data decomposition." 279
The ease of converting software that is not "MPI ready" into an "MPI
ready" version is dependent on the expertise of the software engineers and scientists
working on the problem. For a single application and a single computer program, the level
of expertise required to convert a computer program in this way is attainable in graduate
level, and some undergraduate level, college courses, according to Hollingsworth.280
It has not been possible to determine which, if any, commercially available software is
both MPI ready and applicable to defense-related scientific work.
|
Notes
1 Background Paper on High Performance Computers to Countries of Concern,
Defense Department, November 19, 1998.
2 Ibid.
3 Memorandum for the Record by Paul Koenig, Defense Technical Security
Administration, August 24, 1995.
4 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, Peter Wolcott,
Patrick Homer, May 1998.
5 "Information on the Decision to Revise High Performance Computer
Controls," GAO/NSIAD-98-196.
6 Memorandum for the Record by Paul Koenig, Defense Technical Security
Administration, August 24, 1995.
7 Interview of Dr. David Kahaner, October 19, 1998.
8 "Building on the Basics: An Examination of High-Performance Computing Export
Control Policy in the 1990s," Seymour Goodman, Peter Wolcott, Grey Burkhart, Center
for International Security and Arms Control, Stanford University, November 1995.
9 Ibid.
10 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.
11 Ibid.
12 Ibid.
13 Ibid.
14 Commander in Chief, U.S. Pacific Command Memorandum to the Joint Chiefs of
Staff, Ser: 444-98, November 9, 1998.
15 "PR China: System Simulation Activities," Asian Technology Information
Program, December 24, 1992.
16 "Chinese Prove To Be Attentive Students of Information Warfare,"
Jane's Intelligence Review, October 1997.
17 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.;
"Information on the Decision to Revise High Performance Computer Controls,"
GAO/NSIAD-98-196.
18 Department of Energy, Office of Intelligence, Technical Intelligence Note on
Computers, Nuclear Weapons, and U.S. Security, May 6, 1998.
19 Ibid.
20 Ibid.
21 "Export Controls and China," briefing prepared for the House Committee
on Commerce by Dr. Thomas L. Cook, Los Alamos National Laboratory, September 17, 1998.
22 Testimony of Notra Trulock.
23 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.
24 "Export Controls and China," briefing prepared for the House Committee
on Commerce by Dr. Thomas L. Cook, Los Alamos National Laboratory, September 17, 1998.
25 Testimony of Dr. Thomas L. Cook, Los Alamos National Laboratory, December 16,
1998.
26 "Export Controls and China," briefing prepared for the House Committee
on Commerce by Dr. Thomas L. Cook, Los Alamos National Laboratory, September 17, 1998.
27 Commander in Chief, U.S. Pacific Command Memorandum to the Joint Chiefs of
Staff, Ser: 444-98, November 9, 1998.
28 "Export Controls and China," briefing prepared for the House Committee
on Commerce by Dr. Thomas L. Cook, Los Alamos National Laboratory, September 17, 1998.
29 Department of Energy, Office of Intelligence, Technical Intelligence Note on
Computers, Nuclear Weapons, and U.S. Security, May 6, 1998.
30 Department of Energy, Office of Intelligence, Technical Intelligence Note on
Computers, Nuclear Weapons, and U.S. Security, May 6, 1998, Attachment.
31 "Export Controls and China," briefing prepared for the House Committee
on Commerce by Dr. Thomas L. Cook, Los Alamos National Laboratory, September 17, 1998.
32 "Key Projects in China's Computerization," Asian Technology
Information Program report 98.048.
33 "PR China: System Simulation Activities," Asian Technology Information
Program, December 24, 1992.
34 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
35 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.
36 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
37 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.
38 Ibid.
39 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
40 "Information Warfare Grips China," Jane's Intelligence Review.
41 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the l990s," Seymour Goodman, et. al.
42 "Information Warfare Grips China," Jane's Intelligence Review.
43 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the l990s," Seymour Goodman, et. al.
44 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.
45 "The Militarily Critical Technologies List Part I: Weapons Systems
Technologies," June 1996, Department of Defense, p. 8-7, Background Paper on High
Performance Computers to Countries of Concern, Defense Intelligence Agency, November 19,
1998, cover letter to the Honorable Floyd Spence.
46 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
47 Advanced Computing Technologies in China, March 24, 1998, Asian Technology
Information Project report #ATIP98.022, Book #1, Selected Reports of Asian Technology
Information Project.
48 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
49 Commander in Chief, U.S. Pacific Command Memorandum to the Joint Chiefs of
Staff, Ser: 444-98, November 9, 1998.
50 "The Militarily Critical Technologies List Part I: Weapons Systems
Technologies," June 1996, Department of Defense, Commander in Chief, U.S. Pacific
Command Memorandum to the Joint Chiefs of Staff, Ser: 444-98, November 9, 1998.
51 Advanced Computing Technologies in China, March 24, 1998, Asian Technology
Information Project report #ATIP98.022, Book #1, Selected Reports of Asian Technology
Information Project.
52 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.
53 Ibid.
54 Ibid.
55 "Chinese Prove To Be Attentive Students of Information Warfare,"
Jane's Intelligence Review, October 1997.
56 "Quicklook Report for Military Trends Workshop," Strategic Assessment
Center, Science Applications International Corporation, June 8, 1998.
57 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.; "Information
Warfare Grips China," Jane's Intelligence Review.
58 Memorandum for the Record, Joint Investigative Staff Visit to the Mitre
Corporation, Bedford, MA, October 6, 1988.
59 "Chinese Prove To Be Attentive Students of Information Warfare,"
Jane's Intelligence Review, October 1997; "Information Warfare Grips China,"
Jane's Intelligence Review.
60 "Chinese Prove To Be Attentive Students of Information Warfare,"
Jane's Intelligence Review, October 1997.
61 Ibid.
62 "Information Warfare Grips China," Jane's Intelligence Review.
63 Advanced Computing Technologies in China, March 24, 1998, Asian Technology
Information Project report #ATIP98.022, Book #1, Selected Reports of Asian Technology
Information Project.
64 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
65 Ibid.
66 Ibid.
67 Ibid.
68 Advanced Computing Technologies in China, March 24, 1998, Asian Technology
Information Project report #ATIP98.022, Book #1, Selected Reports of Asian Technology
Information Project.
69 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.
70 "Quicklook Report for Military Trends Workshop," Strategic Assessment
Center, Science Applications International Corporation, June 8, 1998.
71 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
72 "Quicklook Report for Military Trends Workshop," Strategic Assessment
Center, Science Applications International Corporation, June 8, 1998.
73 Commander in Chief, U.S. Pacific Command Memorandum to the Joint Chiefs of
Staff, Ser: 444-98, November 9, 1998.
74 Export Administration Annual Report Fiscal Year 1991.
75 "Export Control on Supercomputers," Federal Register, May 18, 1992,
Vol. 57, No. 96.
76 "Toward a National Export Strategy," Trade Promotion Coordinating
Committee report, September 30, 1993, Chapter 5.
77 Export Administration Annual Report 1995 and 1996 on Foreign Policy Export
Controls.
78 Federal Register, February 24, 1994.
79 Federal Register, April 4, 1994.
80 Code of Federal Regulations, p. 349-356.
81 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
82 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
83 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
84 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
85 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
86 Ibid.
87 Ibid.
88 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
89 U.S. General Accounting Office staff interview of Paul Koenig et. al., November
24, 1997, and February 19, 1998.
90 Defense internal memorandum for the record from Paul Koening on
"Supercomputing Study," August 24, 1995, and U.S. General Accounting Office
staff interview of Paul Koenig, et.al., November 24, 1997.
91 "High Performance Computing Technical Assessment, Summary Report
Findings," Institute for Defense Analyses, Technology Identification & Analyses
Center, Prepared for: Principal Deputy Assistant Secretary of Defense (Dual-Use Technology
Policy & International Programs), August 1995.
92 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
93 U.S. General Accounting Office staff interview of Oksana Nesterczuk, July 21,
1998.
94 "Supercomputer Technology Status and Trends Over the Next Two Years,"
June 2, 1995; "Global Supercomputer Industry and Market Assessment," Department
of Commerce, Office of Strategic Industries and Economic Security, Economic Analysis
Division, June 2, 1995.
95 U.S. General Accounting Office staff interview of Defense Technology Security
Administration officials, November 23, 1997.
96 U.S. General Accounting Office staff interview of Defense Technology Security
Administration officials, February 19, 1998.
97 Defense internal memorandum for the record from Paul Koening on
"Supercomputing Study," August 24, 1995.
98 Ibid.
99 "High Performance Computing Technical Assessment, Summary Report
Findings," Institute for Defense Analyses, Technology Identification & Analyses
Center, Prepared for: Principal Deputy Assistant Secretary of Defense (Dual-Use Technology
Policy & International Programs), August 1995.
100 Ibid.
101 Ibid.
102 Bandwidth (through-put) and latency (transmission delay) are crucial parameters
of the interconnect between processors. The lower the bandwidth, the higher the latency,
and the less scalable the interconnect, the more of a bottleneck the interconnect becomes.
The more the interconnect is a bottleneck, the more "coarsely grained" an
application must be to run effectively on the system. See "Building on the Basics: An
Examination of High-Performance Computing Export Control Policy in the 1990s,"
Seymour Goodman, et. al.
103 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
104 U.S. General Accounting Office staff interview of Institute for Defense
Analyses and Office of the Secretary of Defense officials and written response.
105 Ibid.
106 U.S. General Accounting Office staff interview of Defense Technology Security
Administration officials, July 21, 1998.
107 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
108 Ibid.
109 Interview of Mitchel Wallerstein, November 25, 1998.
110 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
111 Export Administration Regulations, January 25, 1996.
112 Ibid.
113 Ibid.
114 Ibid.
115 Ibid.
116 Export Administration Regulations, April 1998, Supplement No. 1 to Part 774.
117 Ibid.
118 Export Administration Regulations, April 1998, Supplement No. 1 to Part 774,
Part 740.7.
119 Export Administration Regulations, April 1998, Supplement No. 1 to Part 742.12,
Part 742.12, "High Performance Computers.''
120 Ibid.
121 Export Administration Regulations, April 1998, Supplement No. 3 to Part 742,
"Safeguard Conditions and Related Information."
122 Ibid.
123 Export Administration Regulations, April 1998, Part 744, "Control Policy:
End-User and End-Use Based."
124 Ibid.
125 Ibid.
126 Export Administration Regulations, April 1998, Part 772.
127 Export Administration Regulations, April 1998, Legal Authority, Section 12,
"Enforcement," April 1998.
128 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.
129 Ibid.
130 Interview of Will Lowell, November 19, 1998; International Traffic in Arms
Regulations, Section 120.
131 Ibid.
132 Ibid.
133 Ibid.
134 End-use screening is the process exporters follow to evaluate whether a
transaction involves an unacceptable risk of use in, or diversion to, a proliferator or
military end user. "Export Controls: Information on the Decision to Revise High
Performance Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
135 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
136 Export Administration Regulations, April 1998, Part 744, "Control Policy:
End-User and End-Use Based."
137 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
138 Public Law 105-85.
139 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
140 Department of Defense Study, November 19, 1998, Enclosure 7, "Expected
Developments."
141 Ibid.
142 Ibid.
143 Ibid.
144 Ibid.
145 Ibid.
146 PSVs are on-site visits, generally by U.S. government officials, to locations
where goods are shipped for the purpose of ensuring that they have not been diverted to
other locations. ("Export Controls: Information on the Decision to Revise High
Performance Computer Controls," GAO/NSIAD-98-196, September 16, 1998.)
147 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
148 Ibid.
149 Arrangement between the United States and China for end-use visits.
150 Ibid.
151 Interview of Iain S. Baird, November 17, 1998.
152 Response to Committee questions from William Reinsch, James Lewis, and Mark
Menefee, November 17, 1998.
153 Interview of William Reinsch, November 19, 1998.
154 Ibid.
155 "Export Controls: Information on the Decision to Revise High Performance
Computer Controls," GAO/NSIAD-98-196, September 16, 1998.
156 Ibid.
157 Ibid.
158 Ibid.
159 Ibid.
160 U.S. General Accounting Office Staff Summary of Sun Microsystems HPC diversion,
April 1998.
161 Ibid.
162 Ibid.
163 Ibid.
164 Ibid.
165 Ibid.
166 Ibid.
167 Ibid.
168 Export Administration Annual Report, Export Enforcement, March 1998.
169 Ibid.
170 Ibid.
171 Ibid.
172 Export Controls: Information on the Decision to Revise High Performance
Computer Controls, GAO/NSIAD-98-196, September 16, 1998.
173 Memorandum for the Record, "Report on National Lab Briefings of September
28 and 29, 1998," Joint Staff, October 2, 1998.
174 Ibid.
175 The military uses are the design or development of nuclear, biological or
chemical weapons; the design or development of weapons of mass destruction; the design or
development of missile or rocket systems; and any cryptoanalytic or cryptographic purpose.
176 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.; Advanced
Computing Technologies in China, March 24, 1998, Asian Technology Information Project
report #ATIP98.022, Book #1, Selected Reports of Asian Technology Information Project.
177 Ibid.
178 "Computers in China/Korea/Hong Kong, ATIP, 97.048," Asian Technology
Information Project Selected Reports, Book #1.
179 "U.S. Technology Transfers to the People's Republic of China," by
Kathleen Walsh, DFI International, dated December, 1997. This report was produced at the
request of the Commerce Department's Bureau of Export Administration. It was the first in
a series of studies into technology transfers to the PRC commissioned by BXA.
180 "Computers in China/Korea/Hong Kong, ATIP, 97.048," Asian Technology
Information Project Selected Reports, Book #1.
181 Ibid.
182 "U.S. Technology Transfers to the People's Republic of China," by
Kathleen Walsh, DFI International, dated December, 1997. This report was produced at the
request of the Commerce Department's Bureau of Export Administration. It was the first in
a series of studies into technology transfers to the PRC commissioned by BXA.
183 "Computers in China/Korea/Hong Kong, ATIP, 97.048," Asian Technology
Information Project Selected Reports, Book #1.
184 Ibid.
185 Ibid.
186 Advanced Computing Technologies in China, March 24, 1998, Asian Technology
Information Project report #ATIP98.022, Selected Reports of Asian Technology Information
Project, Book #1.
187 Ibid.
188 "High Performance Computing (HPC) in Japan (1)," May 16, 1997, Asian
Technology Information Project report # ATIP97.044, Selected Reports of Asian Technology
Information Project, Book #1.
189 Commerce Department, Bureau of Export Administration's Export Control Automated
Support System (ECASS).
190 Ibid.
191 These notifications included three machines for Hong Kong, a Tier 2 country,
that did not need to be reported under the 1998 notification regulations. Their total
value was about $256,000. Commerce Department, Bureau of Export Administration's Export
Control Automated Support System (ECASS).
192 Commerce Department, Bureau of Export Administration's Export Control Automated
Support System (ECASS).
193 Advanced Computing Technologies in China, March 24, 1998, Asian Technology
Information Project report #ATIP98.022, Book #1, Selected Reports of Asian Technology
Information Project.
194 "Computers in China/Korea/Hong Kong, ATIP, 97.048," page 10, Asian
Technology Information Project Selected Reports, Book #1.
195 Three HPC exports for Hong Kong were included in the data for China.
196 "Computers in China/Korea/Hong Kong, ATIP, 97.048," Asian Technology
Information Project Selected Reports, Book #1.
197 Ibid.
198 Michael Evans, a computer programmer for the Federal Bureau of Investigation
with 13 years private sector programming experience, and 3 years criminal investigative
experience regarding computer crimes, Memorandum For the Record dated, December 15, 1998.
199 "Arms Proliferation Policy, Support to the Presidential Advisory
Board," RAND, 1996.
200 Ibid.
201 Ibid.
202 Ibid.
203 Ibid.
204 Ibid.
205 Interview of Bob Nesbit, October 6, 1998.
206 "The Round Table on Computer Performance Metrics for Export Control:
Discussions and Results," Alfred E. Brenner, Task leader, and Norman R. Howes.
Document of the Institute For Defense Analyses, December 1997. IDA Document D-2116.
207 "NHSE Review 1996 Volume," 1996, Aad J. van der Steen and Jack J.
Dongarra.
208 "Practical Parallel Computing (Physics 500)," Lecture Series,
University of New Mexico, Fall 1995, Dr. Michael Warren.
209 Memorandum for the Record, Joint Staff Interview of Dr. David Kahaner, October
19, 1998.
210 Ibid.
211 Memorandum for the Record, Joint Staff Interview of Dr. Jeff Hollingsworth,
November 5, 1998.
212 Interview of Tom Dunn by Joint Staff, October 29, 1998.
213 Ibid.
214 Ibid.
215 "Practical Parallel Computing (Physics 500)," Lecture Series,
University of New Mexico, Fall 1995, Dr. Michael Warren.
216 Memorandum for the Record, Joint Staff Interview of Dr. David Kahaner, October
19, 1998.
217 Interview of Dr. Jack Dongarra, by U.S. General Accounting Office, February 6,
1998.
218 "Practical Parallel Computing (Physics 500)," Lecture Series,
University of New Mexico, Fall 1995, Dr. Michael Warren.
219 "Off-the-Shelf Chips Conquer The Heights of Computing," Science,
September 8, 1995, American Association for the Advancement of Science, Robert Pool.
220 Defense Intelligence Agency Study, "Distribution of U.S. and Allied High
Performance Computers . . . ," November 19, 1998.
221 Interview of Dr. Jack Dongarra, by U.S. General Accounting Office, February 6,
1998.
222 Memorandum for the Record, Joint Staff, November 2, 1998 DOD HPC briefing.
223 Defense Intelligence Agency Study, "Distribution of U.S. and Allied High
Performance Computers . . . ," November 19, 1998.
224 "Off-the-Shelf Chips Conquer The Heights of Computing", Science,
September 8, 1995, American Association for the Advancement of Science, Robert Pool.
225 Defense Intelligence Agency Study, "Distribution of U.S. and Allied High
Performance Computers . . . ," November 19, 1998.
226 "Off-the-Shelf Chips Conquer The Heights of Computing", Science,
September 8, 1995, American Association for the Advancement of Science, Robert Pool.
227 Defense Intelligence Agency Study, "Distribution of U.S. and Allied High
Performance Computers . . . ," November 19, 1998.
228 "ASCI Blue Pacific can bring IBM on first position in TOP500",
Primeur Analysis, October 28, 1998, Ad Emmen.
229 "Teraflop" is a term used to describe a trillion floating point
operations a second. "Terabyte refers to a trillion bytes of data.
230 "ASCI Blue Pacific can bring IBM on first position in "TOP500,"
Primeur Analysis, October 28, 1998, Ad Emmen.
231 Ibid.
232 "Lawrence Livermore National Laboratory Presentations on China, Nuclear
Weapons and High Performance Computing" September 15, 1998.
233 Defense Intelligence Agency Study, "Distribution of U.S. and Allied High
Performance Computers . . . ," November 19, 1998.
234 Ibid.
235 "Fitting Architecture to Application: Choosing between SMP and RACE,"
Mercury Computer Systems, Inc., June 17, 1996.
236 Defense Intelligence Agency Study, "Distribution of U.S. and Allied High
Performance Computers . . . ," November 19, 1998.
237 An approximation is that the composite theoretical performance rating in MTOPS
is about 75 percent the value in MFLOPS. Defense Intelligence Agency Study,
"Distribution of U.S. and Allied High Performance Computers . . . ," November
19, 1998.
238 "Off-the-Shelf Chips Conquer The Heights of Computing", Science,
September 8, 1995, American Association for the Advancement of Science, Robert Pool.
239 Ibid.
240 Defense Intelligence Agency Study, "Distribution of U.S. and Allied High
Performance Computers . . . ," November 19, 1998.
241 "Fitting Architecture to Application: Choosing between SMP and RACE",
Mercury Computer Systems, Inc., June 17, 1996.
242 Defense Intelligence Agency Study, "Distribution of U.S. and Allied High
Performance Computers . . . ," November 19, 1998.
243 "Lawrence Livermore National Laboratory Presentations on China, Nuclear Weapons
and High Performance Computing," September 15, 1998.
244 Ibid.
245 Ibid.
246 Ibid.
247 Ibid.
248 Ibid.
249 Ibid.
250 "The Round Table on Computer Performance Metrics for Export Control:
Discussions and Results," Institute For Defense Analyses, December 1997.
251 Ibid.
252 Interview of Dr. Jack Dongarra by U.S. General Accounting Office, February 6,
1998.
253 "Off-the-Shelf Chips Conquer The Heights of Computing," Science,
September 8, 1995, American Association for the Advancement of Science, Robert Pool.
254 Interview of Dr. Jack Dongarra, by U.S. General Accounting Office, February 6,
1998.
255 "Practical Parallel Computing (Physics 500)," Lecture Series,
University of New Mexico, Fall 1995, Dr. Michael Warren.
256 Ibid.
257 Ibid.
258 Ibid.
259 Ibid.
260 Ibid.
261 Ibid.
262 Ibid.
263 Http://www.phys.unm.edu
264 "Building on the Basics: An Examination of High-Performance Computing
Export Control Policy in the 1990s," Seymour Goodman, et. al.
265 "High-Performance Computing Technologies: Where We Are Today," Jack
Dongarra, University of Tennessee and Oak Ridge National Laboratory.
266 Ibid.
267 "Off-the-Shelf Chips Conquer The Heights of Computing," Science,
September 8, 1995, American Association for the Advancement of Science, Robert Pool.
268 University of Mannheim and Netlib (a repository maintained by Bell
Laboratories, Oak Ridge National Laboratory, and the University of Tennessee to serve the
computer community) publish statistics on HPCs to, among other things, provide a better
understanding of the HPC market.
269 "Top500 Supercomputer List at Mannheim University and Netlib,"
"Slides about Top500," November 1998, Netlib.
270 "Off-the-Shelf Chips Conquer The Heights of Computing," Science,
September 8, 1995, American Association for the Advancement of Science, Robert Pool.
271 Ibid.
272 "Logic Design for Array-Based Circuits," Dr. Donnamaie E. White,
September 11, 1996.
273 "Top500 Supercomputer List at Mannheim University and Netlib,"
"Slides about Top500," November, 1998, Netlib.
274 "High-Performance Computing, National Security Applications, and Export
Control Policy at the Close of the 20th Century," Seymour Goodman, et. al.
275 Ibid.
276 Ibid.
277 Interview of Dr. Jeff Hollingsworth by Joint Staff, November 5, 1998.
278 Ibid.
279 Ibid.
280 Ibid. |
______________________________________________________________________
|